Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1968-12

AUTHORS

Brandon Carter

ABSTRACT

This paper contains an investigation of spaces with a two parameter Abelian isometry group in which the Hamilton-Jacobi equation for the geodesies is soluble by separation of variables in such a way that a certain natural canonical orthonormal tetrad is determined. The spaces satisfying the stronger condition that the corresponding Schrodinger equation is separable are isolated in a canonical form for which Einstein’s vacuum equations and the source-free Einstein-Maxwell equations (with or without a Λ term) can be solved explicitly. A fairly extensive family of new solutions is obtained including the previously known solutions of de Sitter, Kasner, Taub-NUT, and Kerr as special cases. More... »

PAGES

280-310

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03399503

DOI

http://dx.doi.org/10.1007/bf03399503

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101127207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "Brandon", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(68)90240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000629467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(68)90240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000629467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1925-1501301-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012672201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01451624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019629509", 
          "https://doi.org/10.1007/bf01451624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.116.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060422097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.116.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060422097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.174.1559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.174.1559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.38.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.38.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp/5.1.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063146023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674942"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1968-12", 
    "datePublishedReg": "1968-12-01", 
    "description": "This paper contains an investigation of spaces with a two parameter Abelian isometry group in which the Hamilton-Jacobi equation for the geodesies is soluble by separation of variables in such a way that a certain natural canonical orthonormal tetrad is determined. The spaces satisfying the stronger condition that the corresponding Schrodinger equation is separable are isolated in a canonical form for which Einstein\u2019s vacuum equations and the source-free Einstein-Maxwell equations (with or without a \u039b term) can be solved explicitly. A fairly extensive family of new solutions is obtained including the previously known solutions of de Sitter, Kasner, Taub-NUT, and Kerr as special cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03399503", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein\u2019s Equations", 
    "pagination": "280-310", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7c2dc454a3b226a1a8ee458879998a009e8584bd059e0f3224a667158bafe9c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03399503"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101127207"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03399503", 
      "https://app.dimensions.ai/details/publication/pub.1101127207"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88222_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FBF03399503"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03399503'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03399503'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03399503'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03399503'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03399503 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8f823834be59467892213eb65933786a
4 schema:citation sg:pub.10.1007/bf01451624
5 https://doi.org/10.1016/0375-9601(68)90240-5
6 https://doi.org/10.1063/1.1704018
7 https://doi.org/10.1063/1.1704351
8 https://doi.org/10.1090/s0002-9947-1925-1501301-4
9 https://doi.org/10.1103/physrev.116.1331
10 https://doi.org/10.1103/physrev.133.b845
11 https://doi.org/10.1103/physrev.174.1559
12 https://doi.org/10.1103/physrev.80.440
13 https://doi.org/10.1103/physrevlett.11.237
14 https://doi.org/10.1103/revmodphys.38.483
15 https://doi.org/10.1143/ptp/5.1.82
16 https://doi.org/10.2307/1968433
17 https://doi.org/10.2307/1969567
18 schema:datePublished 1968-12
19 schema:datePublishedReg 1968-12-01
20 schema:description This paper contains an investigation of spaces with a two parameter Abelian isometry group in which the Hamilton-Jacobi equation for the geodesies is soluble by separation of variables in such a way that a certain natural canonical orthonormal tetrad is determined. The spaces satisfying the stronger condition that the corresponding Schrodinger equation is separable are isolated in a canonical form for which Einstein’s vacuum equations and the source-free Einstein-Maxwell equations (with or without a Λ term) can be solved explicitly. A fairly extensive family of new solutions is obtained including the previously known solutions of de Sitter, Kasner, Taub-NUT, and Kerr as special cases.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N0a057f8061f6437e8746e928b47a02b2
25 N93ec6a79426c479aa4c802cbc67598d6
26 sg:journal.1136216
27 schema:name Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations
28 schema:pagination 280-310
29 schema:productId N386ab7928ce246b4908208a7187ea6fb
30 Nbe5c2f8bc8ba42a69e8c98c87b734c66
31 Ne215dbb1bb214a608608d63cfef5a477
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127207
33 https://doi.org/10.1007/bf03399503
34 schema:sdDatePublished 2019-04-11T13:07
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nde28262f26f5422fb786a5041cab8fae
37 schema:url https://link.springer.com/10.1007%2FBF03399503
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0a057f8061f6437e8746e928b47a02b2 schema:volumeNumber 10
42 rdf:type schema:PublicationVolume
43 N386ab7928ce246b4908208a7187ea6fb schema:name readcube_id
44 schema:value a7c2dc454a3b226a1a8ee458879998a009e8584bd059e0f3224a667158bafe9c
45 rdf:type schema:PropertyValue
46 N8f823834be59467892213eb65933786a rdf:first Nfb80f646e97e43258c998c7f7c84a6ba
47 rdf:rest rdf:nil
48 N93ec6a79426c479aa4c802cbc67598d6 schema:issueNumber 4
49 rdf:type schema:PublicationIssue
50 Nbe5c2f8bc8ba42a69e8c98c87b734c66 schema:name doi
51 schema:value 10.1007/bf03399503
52 rdf:type schema:PropertyValue
53 Nde28262f26f5422fb786a5041cab8fae schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Ne215dbb1bb214a608608d63cfef5a477 schema:name dimensions_id
56 schema:value pub.1101127207
57 rdf:type schema:PropertyValue
58 Nfb80f646e97e43258c998c7f7c84a6ba schema:affiliation https://www.grid.ac/institutes/grid.5335.0
59 schema:familyName Carter
60 schema:givenName Brandon
61 rdf:type schema:Person
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136216 schema:issn 0010-3616
69 1432-0916
70 schema:name Communications in Mathematical Physics
71 rdf:type schema:Periodical
72 sg:pub.10.1007/bf01451624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019629509
73 https://doi.org/10.1007/bf01451624
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/0375-9601(68)90240-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000629467
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1063/1.1704018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773960
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1063/1.1704351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774292
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1090/s0002-9947-1925-1501301-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012672201
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrev.116.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060422097
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrev.133.b845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428390
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrev.174.1559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060439466
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrev.80.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456990
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevlett.11.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760845
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/revmodphys.38.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838485
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1143/ptp/5.1.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063146023
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/1968433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673863
98 rdf:type schema:CreativeWork
99 https://doi.org/10.2307/1969567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674942
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
102 schema:name Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...