Use of Discontinuous Methods of Data Collection in Behavioral Intervention: Guidelines for Practitioners View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Kate Fiske, Lara Delmolino

ABSTRACT

Over the past three decades, researchers have examined the sensitivity and accuracy of discontinuous data-collection methods. Momentary-time sampling (MTS) and partial-interval recording (PIR) have received particular attention in regards to their ability to estimate the occurrence of behavior and their sensitivity to behavior change compared to continuous data collection. In this article, we summarize these findings and provide recommendations for designing a discontinuous measurement system with consideration of the dimensions of behavior to be measured and the expected direction of behavior change. More... »

PAGES

77-81

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03391826

DOI

http://dx.doi.org/10.1007/bf03391826

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1078738398

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23730469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fiske", 
        "givenName": "Kate", 
        "id": "sg:person.01074763572.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074763572.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delmolino", 
        "givenName": "Lara", 
        "id": "sg:person.01143076772.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143076772.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Over the past three decades, researchers have examined the sensitivity and accuracy of discontinuous data-collection methods. Momentary-time sampling (MTS) and partial-interval recording (PIR) have received particular attention in regards to their ability to estimate the occurrence of behavior and their sensitivity to behavior change compared to continuous data collection. In this article, we summarize these findings and provide recommendations for designing a discontinuous measurement system with consideration of the dimensions of behavior to be measured and the expected direction of behavior change.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf03391826", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042164", 
        "issn": [
          "1998-1929", 
          "2196-8934"
        ], 
        "name": "Behavior Analysis in Practice", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "sampling", 
      "changes", 
      "data collection", 
      "occurrence of behaviors", 
      "collection", 
      "decades", 
      "data collection methods", 
      "occurrence", 
      "particular attention", 
      "continuous data collection", 
      "use", 
      "sensitivity", 
      "attention", 
      "regard", 
      "ability", 
      "recommendations", 
      "consideration", 
      "guidelines", 
      "researchers", 
      "method", 
      "behavior", 
      "behavior change", 
      "system", 
      "accuracy", 
      "findings", 
      "dimensions", 
      "direction", 
      "practitioners", 
      "article", 
      "dimensions of behavior", 
      "intervention", 
      "recordings", 
      "measurement system", 
      "behavioral interventions", 
      "discontinuous method", 
      "momentary time sampling", 
      "partial interval recording", 
      "discontinuous data-collection methods", 
      "discontinuous measurement system"
    ], 
    "name": "Use of Discontinuous Methods of Data Collection in Behavioral Intervention: Guidelines for Practitioners", 
    "pagination": "77-81", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1078738398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03391826"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23730469"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03391826", 
      "https://app.dimensions.ai/details/publication/pub.1078738398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf03391826"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03391826'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03391826'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03391826'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03391826'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      65 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03391826 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc94e26e6d57c4a89bc43e8ebc5da10a1
4 schema:datePublished 2012-12
5 schema:datePublishedReg 2012-12-01
6 schema:description Over the past three decades, researchers have examined the sensitivity and accuracy of discontinuous data-collection methods. Momentary-time sampling (MTS) and partial-interval recording (PIR) have received particular attention in regards to their ability to estimate the occurrence of behavior and their sensitivity to behavior change compared to continuous data collection. In this article, we summarize these findings and provide recommendations for designing a discontinuous measurement system with consideration of the dimensions of behavior to be measured and the expected direction of behavior change.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Nbae59fcae5434a06ad1564691f7e11ae
11 Nf5c3839aad064446a049e2e230771cc5
12 sg:journal.1042164
13 schema:keywords ability
14 accuracy
15 article
16 attention
17 behavior
18 behavior change
19 behavioral interventions
20 changes
21 collection
22 consideration
23 continuous data collection
24 data collection
25 data collection methods
26 decades
27 dimensions
28 dimensions of behavior
29 direction
30 discontinuous data-collection methods
31 discontinuous measurement system
32 discontinuous method
33 findings
34 guidelines
35 intervention
36 measurement system
37 method
38 momentary time sampling
39 occurrence
40 occurrence of behaviors
41 partial interval recording
42 particular attention
43 practitioners
44 recommendations
45 recordings
46 regard
47 researchers
48 sampling
49 sensitivity
50 system
51 use
52 schema:name Use of Discontinuous Methods of Data Collection in Behavioral Intervention: Guidelines for Practitioners
53 schema:pagination 77-81
54 schema:productId N04dd24641d1a43d683c8d89a6d1525aa
55 Ne2bfe0dd96174a3eb83dc59d7419f17f
56 Ne5b92940d90c4e94bbffa27d52a8b9f2
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078738398
58 https://doi.org/10.1007/bf03391826
59 schema:sdDatePublished 2022-01-01T18:27
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nf22c6cba9dd5416ea507fad1e8c53a99
62 schema:url https://doi.org/10.1007/bf03391826
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N04dd24641d1a43d683c8d89a6d1525aa schema:name pubmed_id
67 schema:value 23730469
68 rdf:type schema:PropertyValue
69 Nbae59fcae5434a06ad1564691f7e11ae schema:issueNumber 2
70 rdf:type schema:PublicationIssue
71 Nc94e26e6d57c4a89bc43e8ebc5da10a1 rdf:first sg:person.01074763572.91
72 rdf:rest Nf4107ce77af1429986f96ed40d7074b3
73 Ne2bfe0dd96174a3eb83dc59d7419f17f schema:name dimensions_id
74 schema:value pub.1078738398
75 rdf:type schema:PropertyValue
76 Ne5b92940d90c4e94bbffa27d52a8b9f2 schema:name doi
77 schema:value 10.1007/bf03391826
78 rdf:type schema:PropertyValue
79 Nf22c6cba9dd5416ea507fad1e8c53a99 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nf4107ce77af1429986f96ed40d7074b3 rdf:first sg:person.01143076772.48
82 rdf:rest rdf:nil
83 Nf5c3839aad064446a049e2e230771cc5 schema:volumeNumber 5
84 rdf:type schema:PublicationVolume
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:journal.1042164 schema:issn 1998-1929
92 2196-8934
93 schema:name Behavior Analysis in Practice
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.01074763572.91 schema:affiliation grid-institutes:grid.430387.b
97 schema:familyName Fiske
98 schema:givenName Kate
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074763572.91
100 rdf:type schema:Person
101 sg:person.01143076772.48 schema:affiliation grid-institutes:grid.430387.b
102 schema:familyName Delmolino
103 schema:givenName Lara
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143076772.48
105 rdf:type schema:Person
106 grid-institutes:grid.430387.b schema:alternateName Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA
107 schema:name Douglass Developmental Disabilities Center and Rutgers, The State University of New Jersey, New Jersey, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...