A preliminary laboratory investigation of air embolus detection and grading using an artificial neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-05

AUTHORS

Kristin Strong, Dwayne R. Westenskow, Perry G. Fine, Joseph A. Orr

ABSTRACT

SUMMARY STATEMENT: Processed digitized Doppler signals abstracted from recordings during continuous air infusion in dogs were used to train a neural network to estimate air embolism infusion rates. BACKGROUND: Precordial Doppler is a sensitive technique for detecting venous air embolism during anesthesia, but it requires constant attentive listening. Since neural networks are particularly well suited to the task of pattern recognition, we sought to investigate this technology for detection and grading of air embolism. METHODS: Air was infused into peripheral veins of four anesthetized dogs at rates of 0.025, 0.05, 0.10, 0.25, 0.50 and 1.0 ml-1.kg-1.min-1 while digital recordings of the precordial Doppler ultrasound signal were collected. The frequency content of the recordings was determined by Fourier analysis. The output of the Fourier transform was the input to a neural network. The network was then trained to estimate the air infusion rate. RESULTS: The correlation coefficient between the size of the air embolism and the air infusion rate was greater than r2 = 0.93 for each of the four animals in the study when the network was trained using the data for all four dogs. When the data from a dog was withheld from the training set and used only for testing the correlation coefficients ranged from r2 = 0.75 to r2 = 0.27. For frequencies below 250 Hz, the acoustic energy tended to fall as the air infusion rate increased. The opposite occurred at frequencies above 325 Hz. CONCLUSIONS: Neural network processing of the precordial Doppler signal provides a quantitative estimate of the size of an air embolism. More... »

PAGES

103-107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03356584

DOI

http://dx.doi.org/10.1007/bf03356584

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017898301

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9336735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anesthesia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embolism, Air", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Computing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Doppler", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Bioengineering, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strong", 
        "givenName": "Kristin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Anesthesiology 3C-444, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Westenskow", 
        "givenName": "Dwayne R.", 
        "id": "sg:person.01315464743.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315464743.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Anesthesiology 3C-444, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fine", 
        "givenName": "Perry G.", 
        "id": "sg:person.01035634521.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035634521.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Anesthesiology 3C-444, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orr", 
        "givenName": "Joseph A.", 
        "id": "sg:person.0747671224.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747671224.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01618109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004500610", 
          "https://doi.org/10.1007/bf01618109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-197806000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008864676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-197806000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008864676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1988.00380040035007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011128900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030090918", 
          "https://doi.org/10.1007/bf03026902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030090918", 
          "https://doi.org/10.1007/bf03026902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00443465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042147618", 
          "https://doi.org/10.1007/bf00443465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00443465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042147618", 
          "https://doi.org/10.1007/bf00443465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03007625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042500546", 
          "https://doi.org/10.1007/bf03007625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03007625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042500546", 
          "https://doi.org/10.1007/bf03007625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-199109001-00464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043443027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-199109001-00464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043443027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/00000539-199104000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044410287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tau.1967.1161901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061520637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.1.0075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.1.0075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.1.0075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074337796", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078917311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.167.2.3357948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079702329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079824874", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082270940", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-05", 
    "datePublishedReg": "1997-05-01", 
    "description": "SUMMARY STATEMENT: Processed digitized Doppler signals abstracted from recordings during continuous air infusion in dogs were used to train a neural network to estimate air embolism infusion rates.\nBACKGROUND: Precordial Doppler is a sensitive technique for detecting venous air embolism during anesthesia, but it requires constant attentive listening. Since neural networks are particularly well suited to the task of pattern recognition, we sought to investigate this technology for detection and grading of air embolism.\nMETHODS: Air was infused into peripheral veins of four anesthetized dogs at rates of 0.025, 0.05, 0.10, 0.25, 0.50 and 1.0 ml-1.kg-1.min-1 while digital recordings of the precordial Doppler ultrasound signal were collected. The frequency content of the recordings was determined by Fourier analysis. The output of the Fourier transform was the input to a neural network. The network was then trained to estimate the air infusion rate.\nRESULTS: The correlation coefficient between the size of the air embolism and the air infusion rate was greater than r2 = 0.93 for each of the four animals in the study when the network was trained using the data for all four dogs. When the data from a dog was withheld from the training set and used only for testing the correlation coefficients ranged from r2 = 0.75 to r2 = 0.27. For frequencies below 250 Hz, the acoustic energy tended to fall as the air infusion rate increased. The opposite occurred at frequencies above 325 Hz.\nCONCLUSIONS: Neural network processing of the precordial Doppler signal provides a quantitative estimate of the size of an air embolism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03356584", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095992", 
        "issn": [
          "0167-9945", 
          "2214-7314"
        ], 
        "name": "International journal of clinical monitoring and computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "A preliminary laboratory investigation of air embolus detection and grading using an artificial neural network", 
    "pagination": "103-107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "554775979744a352638f4044e9841e8972217c6aa4ce36f3e7524d986c9b5860"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9336735"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8601284"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03356584"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017898301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03356584", 
      "https://app.dimensions.ai/details/publication/pub.1017898301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03356584"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03356584'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03356584'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03356584'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03356584'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      51 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03356584 schema:about N03f34cb5ab2d440e825029ba05b9446b
2 N22b07532a6f649038afdc30852b338b4
3 N7221c28b8bda438189592ddc409aab8a
4 N849f009a7b5147d58db9190bb4a4870d
5 Nafe053a48fab4ab5abe10b991e3bc79f
6 Nb8aafe1d582341ba8e2282b66846ca1e
7 Nc1f916263b1f4a76a88adda89e4d57df
8 anzsrc-for:10
9 anzsrc-for:1005
10 schema:author Nd8a1185e842a4a1395b6ff6fd627792d
11 schema:citation sg:pub.10.1007/bf00443465
12 sg:pub.10.1007/bf01618109
13 sg:pub.10.1007/bf03007625
14 sg:pub.10.1007/bf03026902
15 https://app.dimensions.ai/details/publication/pub.1074337796
16 https://app.dimensions.ai/details/publication/pub.1078917311
17 https://app.dimensions.ai/details/publication/pub.1079824874
18 https://app.dimensions.ai/details/publication/pub.1082270940
19 https://doi.org/10.1001/archinte.1988.00380040035007
20 https://doi.org/10.1097/00000542-197806000-00009
21 https://doi.org/10.1097/00000542-199109001-00464
22 https://doi.org/10.1109/tau.1967.1161901
23 https://doi.org/10.1148/radiology.167.2.3357948
24 https://doi.org/10.1213/00000539-199104000-00026
25 https://doi.org/10.3171/jns.1981.54.1.0075
26 schema:datePublished 1997-05
27 schema:datePublishedReg 1997-05-01
28 schema:description SUMMARY STATEMENT: Processed digitized Doppler signals abstracted from recordings during continuous air infusion in dogs were used to train a neural network to estimate air embolism infusion rates. BACKGROUND: Precordial Doppler is a sensitive technique for detecting venous air embolism during anesthesia, but it requires constant attentive listening. Since neural networks are particularly well suited to the task of pattern recognition, we sought to investigate this technology for detection and grading of air embolism. METHODS: Air was infused into peripheral veins of four anesthetized dogs at rates of 0.025, 0.05, 0.10, 0.25, 0.50 and 1.0 ml-1.kg-1.min-1 while digital recordings of the precordial Doppler ultrasound signal were collected. The frequency content of the recordings was determined by Fourier analysis. The output of the Fourier transform was the input to a neural network. The network was then trained to estimate the air infusion rate. RESULTS: The correlation coefficient between the size of the air embolism and the air infusion rate was greater than r2 = 0.93 for each of the four animals in the study when the network was trained using the data for all four dogs. When the data from a dog was withheld from the training set and used only for testing the correlation coefficients ranged from r2 = 0.75 to r2 = 0.27. For frequencies below 250 Hz, the acoustic energy tended to fall as the air infusion rate increased. The opposite occurred at frequencies above 325 Hz. CONCLUSIONS: Neural network processing of the precordial Doppler signal provides a quantitative estimate of the size of an air embolism.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N45419af84fe04d3989992f9cae681541
33 Nba436069d472407690c7ae511c38d7b4
34 sg:journal.1095992
35 schema:name A preliminary laboratory investigation of air embolus detection and grading using an artificial neural network
36 schema:pagination 103-107
37 schema:productId N71932fd9899740fc81c33012987595ac
38 N78b8d5bf8b9547f8b48a43a0f540b95f
39 Nddd20d57327f48aa924564a2472a9a95
40 Ne4dec53b25ee44a3b330c70f4634f707
41 Nfedd0ae0b03f44b0ae0d96bc173abb60
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017898301
43 https://doi.org/10.1007/bf03356584
44 schema:sdDatePublished 2019-04-10T23:24
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N445d2b345c824798a2cbc3447a20caba
47 schema:url http://link.springer.com/10.1007%2FBF03356584
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N03f34cb5ab2d440e825029ba05b9446b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Mathematical Computing
53 rdf:type schema:DefinedTerm
54 N22b07532a6f649038afdc30852b338b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Ultrasonography, Doppler
56 rdf:type schema:DefinedTerm
57 N445d2b345c824798a2cbc3447a20caba schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N45419af84fe04d3989992f9cae681541 schema:volumeNumber 14
60 rdf:type schema:PublicationVolume
61 N64e3b637c54b4dd0bdab8c9ea5c032dc rdf:first sg:person.01315464743.28
62 rdf:rest Ne293caa8283845808331d06d3df36376
63 N71932fd9899740fc81c33012987595ac schema:name nlm_unique_id
64 schema:value 8601284
65 rdf:type schema:PropertyValue
66 N7221c28b8bda438189592ddc409aab8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Animals
68 rdf:type schema:DefinedTerm
69 N78b8d5bf8b9547f8b48a43a0f540b95f schema:name doi
70 schema:value 10.1007/bf03356584
71 rdf:type schema:PropertyValue
72 N849f009a7b5147d58db9190bb4a4870d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Neural Networks (Computer)
74 rdf:type schema:DefinedTerm
75 Na54f6993dcd844edb4e7d4e984cbfe53 rdf:first sg:person.0747671224.93
76 rdf:rest rdf:nil
77 Nafe053a48fab4ab5abe10b991e3bc79f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Dogs
79 rdf:type schema:DefinedTerm
80 Nb8aafe1d582341ba8e2282b66846ca1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Anesthesia
82 rdf:type schema:DefinedTerm
83 Nba436069d472407690c7ae511c38d7b4 schema:issueNumber 2
84 rdf:type schema:PublicationIssue
85 Nc1f916263b1f4a76a88adda89e4d57df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Embolism, Air
87 rdf:type schema:DefinedTerm
88 Nd8a1185e842a4a1395b6ff6fd627792d rdf:first Nf1a8379a46894524b077720663b1f2d0
89 rdf:rest N64e3b637c54b4dd0bdab8c9ea5c032dc
90 Nddd20d57327f48aa924564a2472a9a95 schema:name pubmed_id
91 schema:value 9336735
92 rdf:type schema:PropertyValue
93 Ne293caa8283845808331d06d3df36376 rdf:first sg:person.01035634521.50
94 rdf:rest Na54f6993dcd844edb4e7d4e984cbfe53
95 Ne4dec53b25ee44a3b330c70f4634f707 schema:name readcube_id
96 schema:value 554775979744a352638f4044e9841e8972217c6aa4ce36f3e7524d986c9b5860
97 rdf:type schema:PropertyValue
98 Nf1a8379a46894524b077720663b1f2d0 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
99 schema:familyName Strong
100 schema:givenName Kristin
101 rdf:type schema:Person
102 Nfedd0ae0b03f44b0ae0d96bc173abb60 schema:name dimensions_id
103 schema:value pub.1017898301
104 rdf:type schema:PropertyValue
105 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
106 schema:name Technology
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
109 schema:name Communications Technologies
110 rdf:type schema:DefinedTerm
111 sg:journal.1095992 schema:issn 0167-9945
112 2214-7314
113 schema:name International journal of clinical monitoring and computing
114 rdf:type schema:Periodical
115 sg:person.01035634521.50 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
116 schema:familyName Fine
117 schema:givenName Perry G.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035634521.50
119 rdf:type schema:Person
120 sg:person.01315464743.28 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
121 schema:familyName Westenskow
122 schema:givenName Dwayne R.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315464743.28
124 rdf:type schema:Person
125 sg:person.0747671224.93 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
126 schema:familyName Orr
127 schema:givenName Joseph A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747671224.93
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00443465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042147618
131 https://doi.org/10.1007/bf00443465
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01618109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004500610
134 https://doi.org/10.1007/bf01618109
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf03007625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042500546
137 https://doi.org/10.1007/bf03007625
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf03026902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030090918
140 https://doi.org/10.1007/bf03026902
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1074337796 schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1078917311 schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1079824874 schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1082270940 schema:CreativeWork
146 https://doi.org/10.1001/archinte.1988.00380040035007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011128900
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1097/00000542-197806000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008864676
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1097/00000542-199109001-00464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043443027
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tau.1967.1161901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061520637
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1148/radiology.167.2.3357948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079702329
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1213/00000539-199104000-00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044410287
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3171/jns.1981.54.1.0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071092323
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
161 schema:name Department of Anesthesiology 3C-444, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA
162 Department of Bioengineering, University of Utah Health Science Center, 50 North Medical Drive, 84132, Salt Lake City, UT, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...