Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-07

AUTHORS

Satoshi Nishimura, Mika Nagasaki, Ichiro Manabe, Koji Eto, Takashi Kadowaki, Ryozo Nagai

ABSTRACT

Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions. More... »

PAGES

s234-s238

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03354227

DOI

http://dx.doi.org/10.1007/bf03354227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002005353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "PRESTO, Japan Science and Technology Agency, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Nano-Bioengineering Education Program, The University of Tokyo, Japan", 
            "PRESTO, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Satoshi", 
        "id": "sg:person.07504546042.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504546042.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagasaki", 
        "givenName": "Mika", 
        "id": "sg:person.01267044777.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267044777.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PRESTO, Japan Science and Technology Agency, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Nano-Bioengineering Education Program, The University of Tokyo, Japan", 
            "PRESTO, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manabe", 
        "givenName": "Ichiro", 
        "id": "sg:person.0577123423.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eto", 
        "givenName": "Koji", 
        "id": "sg:person.01062427654.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Metabolic Diseases, The University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Metabolic Diseases, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadowaki", 
        "givenName": "Takashi", 
        "id": "sg:person.01353472360.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Ryozo", 
        "id": "sg:person.0772176333.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042166283", 
          "https://doi.org/10.1038/nature05485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.1964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018401818", 
          "https://doi.org/10.1038/nm.1964"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07", 
    "datePublishedReg": "2009-07-01", 
    "description": "Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf03354227", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012133", 
        "issn": [
          "1023-3830", 
          "1420-908X"
        ], 
        "name": "Inflammation Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "obese adipose tissue", 
      "adipose tissue remodeling", 
      "adipose tissue", 
      "chronic inflammation", 
      "T cell-macrophage interaction", 
      "local immunological changes", 
      "inflammatory macrophage infiltration", 
      "effector T cells", 
      "tissue remodeling", 
      "maintenance of inflammation", 
      "systemic insulin resistance", 
      "new therapeutic interventions", 
      "hallmark of inflammation", 
      "vivo molecular imaging method", 
      "endothelial cell interactions", 
      "immunological changes", 
      "metabolic syndrome", 
      "molecular imaging methods", 
      "macrophage infiltration", 
      "insulin resistance", 
      "inflammatory process", 
      "obese adipose", 
      "T cells", 
      "inflammation", 
      "vivo visualization technique", 
      "therapeutic interventions", 
      "upregulated expression", 
      "adhesion molecules", 
      "multiple cell types", 
      "multi-cellular interactions", 
      "local activation", 
      "major role", 
      "cell interactions", 
      "temporal interrelationships", 
      "cell types", 
      "tissue", 
      "remodeling", 
      "vivo", 
      "CD8", 
      "obesity", 
      "dysfunction", 
      "syndrome", 
      "imaging method", 
      "microcirculation", 
      "angiogenesis", 
      "infiltration", 
      "adipose", 
      "adipogenesis", 
      "intervention", 
      "hallmark", 
      "role", 
      "induction", 
      "activation", 
      "cells", 
      "expression", 
      "dynamic interplay", 
      "large number", 
      "resistance", 
      "maintenance", 
      "changes", 
      "addition", 
      "number", 
      "types", 
      "interaction", 
      "technique", 
      "interrelationships", 
      "results", 
      "molecules", 
      "interplay", 
      "method", 
      "process", 
      "visualization techniques", 
      "power"
    ], 
    "name": "Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method", 
    "pagination": "s234-s238", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002005353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03354227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03354227", 
      "https://app.dimensions.ai/details/publication/pub.1002005353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf03354227"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      100 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03354227 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N67efee2e43cf4b4c8e9cd8219da85b7b
4 schema:citation sg:pub.10.1038/nature05485
5 sg:pub.10.1038/nm.1964
6 schema:datePublished 2009-07
7 schema:datePublishedReg 2009-07-01
8 schema:description Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N332837fbf5e642eca2c2e50579f36b15
12 N550c64ec43f04023bb2999ad4f3cfc47
13 sg:journal.1012133
14 schema:keywords CD8
15 T cell-macrophage interaction
16 T cells
17 activation
18 addition
19 adhesion molecules
20 adipogenesis
21 adipose
22 adipose tissue
23 adipose tissue remodeling
24 angiogenesis
25 cell interactions
26 cell types
27 cells
28 changes
29 chronic inflammation
30 dynamic interplay
31 dysfunction
32 effector T cells
33 endothelial cell interactions
34 expression
35 hallmark
36 hallmark of inflammation
37 imaging method
38 immunological changes
39 induction
40 infiltration
41 inflammation
42 inflammatory macrophage infiltration
43 inflammatory process
44 insulin resistance
45 interaction
46 interplay
47 interrelationships
48 intervention
49 large number
50 local activation
51 local immunological changes
52 macrophage infiltration
53 maintenance
54 maintenance of inflammation
55 major role
56 metabolic syndrome
57 method
58 microcirculation
59 molecular imaging methods
60 molecules
61 multi-cellular interactions
62 multiple cell types
63 new therapeutic interventions
64 number
65 obese adipose
66 obese adipose tissue
67 obesity
68 power
69 process
70 remodeling
71 resistance
72 results
73 role
74 syndrome
75 systemic insulin resistance
76 technique
77 temporal interrelationships
78 therapeutic interventions
79 tissue
80 tissue remodeling
81 types
82 upregulated expression
83 visualization techniques
84 vivo
85 vivo molecular imaging method
86 vivo visualization technique
87 schema:name Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method
88 schema:pagination s234-s238
89 schema:productId N15641cf535e2419da733d59f86f91daf
90 Nd4955aea95ac4f74ae79572697fa091e
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002005353
92 https://doi.org/10.1007/bf03354227
93 schema:sdDatePublished 2022-08-04T16:57
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N9702de5973d547b990ae152cfb295139
96 schema:url https://doi.org/10.1007/bf03354227
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N15641cf535e2419da733d59f86f91daf schema:name dimensions_id
101 schema:value pub.1002005353
102 rdf:type schema:PropertyValue
103 N332837fbf5e642eca2c2e50579f36b15 schema:volumeNumber 58
104 rdf:type schema:PublicationVolume
105 N550c64ec43f04023bb2999ad4f3cfc47 schema:issueNumber Suppl 2
106 rdf:type schema:PublicationIssue
107 N660dbdf6ecd24886bf05bf76b0ee0ca6 rdf:first sg:person.0772176333.38
108 rdf:rest rdf:nil
109 N67efee2e43cf4b4c8e9cd8219da85b7b rdf:first sg:person.07504546042.33
110 rdf:rest Nd4688e82dba04c818777a87a0c7b65c4
111 N6cef26d0f7e347269f582a16dec9f56f rdf:first sg:person.0577123423.24
112 rdf:rest Nf73a9944133243d7b9d92a5bce6a1d52
113 N783f890c404147fe83e2dec3dbc6f76c rdf:first sg:person.01353472360.41
114 rdf:rest N660dbdf6ecd24886bf05bf76b0ee0ca6
115 N9702de5973d547b990ae152cfb295139 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nd4688e82dba04c818777a87a0c7b65c4 rdf:first sg:person.01267044777.82
118 rdf:rest N6cef26d0f7e347269f582a16dec9f56f
119 Nd4955aea95ac4f74ae79572697fa091e schema:name doi
120 schema:value 10.1007/bf03354227
121 rdf:type schema:PropertyValue
122 Nf73a9944133243d7b9d92a5bce6a1d52 rdf:first sg:person.01062427654.09
123 rdf:rest N783f890c404147fe83e2dec3dbc6f76c
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
128 schema:name Clinical Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1012133 schema:issn 1023-3830
131 1420-908X
132 schema:name Inflammation Research
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01062427654.09 schema:affiliation grid-institutes:grid.26999.3d
136 schema:familyName Eto
137 schema:givenName Koji
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09
139 rdf:type schema:Person
140 sg:person.01267044777.82 schema:affiliation grid-institutes:grid.26999.3d
141 schema:familyName Nagasaki
142 schema:givenName Mika
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267044777.82
144 rdf:type schema:Person
145 sg:person.01353472360.41 schema:affiliation grid-institutes:grid.26999.3d
146 schema:familyName Kadowaki
147 schema:givenName Takashi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41
149 rdf:type schema:Person
150 sg:person.0577123423.24 schema:affiliation grid-institutes:grid.419082.6
151 schema:familyName Manabe
152 schema:givenName Ichiro
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24
154 rdf:type schema:Person
155 sg:person.07504546042.33 schema:affiliation grid-institutes:grid.419082.6
156 schema:familyName Nishimura
157 schema:givenName Satoshi
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504546042.33
159 rdf:type schema:Person
160 sg:person.0772176333.38 schema:affiliation grid-institutes:grid.26999.3d
161 schema:familyName Nagai
162 schema:givenName Ryozo
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38
164 rdf:type schema:Person
165 sg:pub.10.1038/nature05485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042166283
166 https://doi.org/10.1038/nature05485
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nm.1964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018401818
169 https://doi.org/10.1038/nm.1964
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.26999.3d schema:alternateName Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan
172 Department of Cardiovascular Medicine, The University of Tokyo, Japan
173 Department of Metabolic Diseases, The University of Tokyo, Japan
174 Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan
175 schema:name Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan
176 Department of Cardiovascular Medicine, The University of Tokyo, Japan
177 Department of Metabolic Diseases, The University of Tokyo, Japan
178 Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan
179 rdf:type schema:Organization
180 grid-institutes:grid.419082.6 schema:alternateName PRESTO, Japan Science and Technology Agency, Japan
181 schema:name Department of Cardiovascular Medicine, The University of Tokyo, Japan
182 Nano-Bioengineering Education Program, The University of Tokyo, Japan
183 PRESTO, Japan Science and Technology Agency, Japan
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...