Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-07

AUTHORS

Satoshi Nishimura, Mika Nagasaki, Ichiro Manabe, Koji Eto, Takashi Kadowaki, Ryozo Nagai

ABSTRACT

Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions. More... »

PAGES

s234-s238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03354227

DOI

http://dx.doi.org/10.1007/bf03354227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002005353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Nano-Bioengineering Education Program, The University of Tokyo, Japan", 
            "PRESTO, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Satoshi", 
        "id": "sg:person.07504546042.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504546042.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagasaki", 
        "givenName": "Mika", 
        "id": "sg:person.01267044777.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267044777.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan", 
            "Nano-Bioengineering Education Program, The University of Tokyo, Japan", 
            "PRESTO, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manabe", 
        "givenName": "Ichiro", 
        "id": "sg:person.0577123423.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eto", 
        "givenName": "Koji", 
        "id": "sg:person.01062427654.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Metabolic Diseases, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadowaki", 
        "givenName": "Takashi", 
        "id": "sg:person.01353472360.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, The University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Ryozo", 
        "id": "sg:person.0772176333.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm.1964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018401818", 
          "https://doi.org/10.1038/nm.1964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.1964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018401818", 
          "https://doi.org/10.1038/nm.1964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042166283", 
          "https://doi.org/10.1038/nature05485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042166283", 
          "https://doi.org/10.1038/nature05485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042166283", 
          "https://doi.org/10.1038/nature05485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db06-1749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci19246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063416393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci19451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063416401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci33328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063417054"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07", 
    "datePublishedReg": "2009-07-01", 
    "description": "Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03354227", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012133", 
        "issn": [
          "1023-3830", 
          "1420-908X"
        ], 
        "name": "Inflammation Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method", 
    "pagination": "s234-s238", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "098cde2b9a079e17b8e4c06095b6233f68057c310125aeb7919375be86ba2c7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03354227"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002005353"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03354227", 
      "https://app.dimensions.ai/details/publication/pub.1002005353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03354227"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03354227'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03354227 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N05f45a2ffe724dc3a8632f086dfa55d6
4 schema:citation sg:pub.10.1038/nature05485
5 sg:pub.10.1038/nm.1964
6 https://doi.org/10.1172/jci19246
7 https://doi.org/10.1172/jci19451
8 https://doi.org/10.1172/jci33328
9 https://doi.org/10.2337/db06-1749
10 schema:datePublished 2009-07
11 schema:datePublishedReg 2009-07-01
12 schema:description Obese visceral adipose tissue remodeling and dysfunction, based on chronic inflammation and local immunological changes, play major roles in the metabolic syndrome. Therefore, to assess the dynamic interplay between multiple cell types in obese adipose, an in vivo visualization technique was developed. In vivo imaging revealed close spatial and temporal interrelationships between angiogenesis and adipogenesis, which were augmented in obese adipose tissue. In addition, increased leukocyte-platelet-endothelial cell interactions were observed in the microcirculation, a hallmark of inflammation. Upregulated expression of adhesion molecules contribute to local activation of inflammatory processes. We also found that large numbers of CD8+ effector T cells infiltrated into the obese adipose tissue, playing major roles in inflammatory macrophage infiltration into obese adipose tissue, induction and maintenance of inflammation, and systemic insulin resistance. Our results demonstrate the power of our imaging technique to analyze multi-cellular interactions in inflammation in vivo and to evaluate new therapeutic interventions.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N7364559d61e24dea8f2edf00db8577b8
17 Nb736ea0dc61d4061986d72ba06d67322
18 sg:journal.1012133
19 schema:name Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method
20 schema:pagination s234-s238
21 schema:productId Ncb90929968d34463b7c72ad3cbcd132f
22 Ned86a820120c424bb64d14720730f16c
23 Nfa27ecb8f8004321b49bc623c2c2e46c
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002005353
25 https://doi.org/10.1007/bf03354227
26 schema:sdDatePublished 2019-04-10T18:19
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N78cf6cf0a5f944d9a7bf314607dae785
29 schema:url http://link.springer.com/10.1007%2FBF03354227
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N05f45a2ffe724dc3a8632f086dfa55d6 rdf:first sg:person.07504546042.33
34 rdf:rest Ndff9b646ad0b40d6a93982934a3139d8
35 N0c4d809c4fe44174a37abcd75b84a1b9 rdf:first sg:person.0577123423.24
36 rdf:rest N9f891759f774417d9a9da9ce0dc09170
37 N4b1669fc2128403ba76e7773c12ec06c rdf:first sg:person.0772176333.38
38 rdf:rest rdf:nil
39 N7364559d61e24dea8f2edf00db8577b8 schema:volumeNumber 58
40 rdf:type schema:PublicationVolume
41 N78cf6cf0a5f944d9a7bf314607dae785 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N9f891759f774417d9a9da9ce0dc09170 rdf:first sg:person.01062427654.09
44 rdf:rest Nc7de8daa512949f295a468a6e4a83ecb
45 Nb736ea0dc61d4061986d72ba06d67322 schema:issueNumber Suppl 2
46 rdf:type schema:PublicationIssue
47 Nc7de8daa512949f295a468a6e4a83ecb rdf:first sg:person.01353472360.41
48 rdf:rest N4b1669fc2128403ba76e7773c12ec06c
49 Ncb90929968d34463b7c72ad3cbcd132f schema:name dimensions_id
50 schema:value pub.1002005353
51 rdf:type schema:PropertyValue
52 Ndff9b646ad0b40d6a93982934a3139d8 rdf:first sg:person.01267044777.82
53 rdf:rest N0c4d809c4fe44174a37abcd75b84a1b9
54 Ned86a820120c424bb64d14720730f16c schema:name readcube_id
55 schema:value 098cde2b9a079e17b8e4c06095b6233f68057c310125aeb7919375be86ba2c7d
56 rdf:type schema:PropertyValue
57 Nfa27ecb8f8004321b49bc623c2c2e46c schema:name doi
58 schema:value 10.1007/bf03354227
59 rdf:type schema:PropertyValue
60 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
61 schema:name Medical and Health Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
64 schema:name Immunology
65 rdf:type schema:DefinedTerm
66 sg:journal.1012133 schema:issn 1023-3830
67 1420-908X
68 schema:name Inflammation Research
69 rdf:type schema:Periodical
70 sg:person.01062427654.09 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
71 schema:familyName Eto
72 schema:givenName Koji
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09
74 rdf:type schema:Person
75 sg:person.01267044777.82 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
76 schema:familyName Nagasaki
77 schema:givenName Mika
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267044777.82
79 rdf:type schema:Person
80 sg:person.01353472360.41 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
81 schema:familyName Kadowaki
82 schema:givenName Takashi
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41
84 rdf:type schema:Person
85 sg:person.0577123423.24 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
86 schema:familyName Manabe
87 schema:givenName Ichiro
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24
89 rdf:type schema:Person
90 sg:person.07504546042.33 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
91 schema:familyName Nishimura
92 schema:givenName Satoshi
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504546042.33
94 rdf:type schema:Person
95 sg:person.0772176333.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
96 schema:familyName Nagai
97 schema:givenName Ryozo
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38
99 rdf:type schema:Person
100 sg:pub.10.1038/nature05485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042166283
101 https://doi.org/10.1038/nature05485
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nm.1964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018401818
104 https://doi.org/10.1038/nm.1964
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1172/jci19246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063416393
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1172/jci19451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063416401
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1172/jci33328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063417054
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2337/db06-1749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350479
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
115 schema:name Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Japan
116 Department of Cardiovascular Medicine, The University of Tokyo, Japan
117 Department of Metabolic Diseases, The University of Tokyo, Japan
118 Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, The University of Tokyo, Japan
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
121 schema:name Department of Cardiovascular Medicine, The University of Tokyo, Japan
122 Nano-Bioengineering Education Program, The University of Tokyo, Japan
123 PRESTO, Japan Science and Technology Agency, Japan
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...