A Generalization of Newman’s Result on the Zeros of Fourier Transforms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01

AUTHORS

Haseo Ki, Young-One Kim

ABSTRACT

In this paper, the class of complex Borel measures μ, satisfying μ(−E) = μ(E) for every Borel set E ⊂ ℝ, such that the functions fμ,λ, λ > 0, defined by , have only real zeros, is completely determined. It is done by establishing a general theorem (Theorem 1.3) on the asymptotic behavior of the zero-distribution of fμλ} for λ → ∞. The theorem is applied to the Riemann ξ-function. More... »

PAGES

449-467

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03321859

DOI

http://dx.doi.org/10.1007/bf03321859

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046515470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Mathematics, Yonsei University, 120-749, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ki", 
        "givenName": "Haseo", 
        "id": "sg:person.013747505771.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747505771.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mathematical Sciences, Seoul National University, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young-One", 
        "id": "sg:person.013173561433.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173561433.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1976-0434982-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017600975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1994.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032072375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1927.158.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039928289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016677511798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050762404", 
          "https://doi.org/10.1023/a:1016677511798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-50-01720-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "In this paper, the class of complex Borel measures \u03bc, satisfying \u03bc(\u2212E) = \u03bc(E) for every Borel set E \u2282 \u211d, such that the functions f\u03bc,\u03bb, \u03bb > 0, defined by , have only real zeros, is completely determined. It is done by establishing a general theorem (Theorem 1.3) on the asymptotic behavior of the zero-distribution of f\u03bc\u03bb} for \u03bb \u2192 \u221e. The theorem is applied to the Riemann \u03be-function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03321859", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136555", 
        "issn": [
          "1617-9447", 
          "2195-3724"
        ], 
        "name": "Computational Methods and Function Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "A Generalization of Newman\u2019s Result on the Zeros of Fourier Transforms", 
    "pagination": "449-467", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd94fb5f9e2e9503b354c5166b5180eb9278a96bfab3a1bc54d7c9c8123d19fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03321859"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046515470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03321859", 
      "https://app.dimensions.ai/details/publication/pub.1046515470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF03321859"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03321859'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03321859'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03321859'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03321859'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03321859 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nacc5870a4b5643f68dd3784f590d065b
4 schema:citation sg:pub.10.1023/a:1016677511798
5 https://doi.org/10.1006/jmaa.1994.1334
6 https://doi.org/10.1090/mmono/005
7 https://doi.org/10.1090/s0002-9939-1976-0434982-5
8 https://doi.org/10.1215/s0012-7094-50-01720-0
9 https://doi.org/10.1515/crll.1927.158.6
10 schema:datePublished 2004-01
11 schema:datePublishedReg 2004-01-01
12 schema:description In this paper, the class of complex Borel measures μ, satisfying μ(−E) = μ(E) for every Borel set E ⊂ ℝ, such that the functions fμ,λ, λ > 0, defined by , have only real zeros, is completely determined. It is done by establishing a general theorem (Theorem 1.3) on the asymptotic behavior of the zero-distribution of fμλ} for λ → ∞. The theorem is applied to the Riemann ξ-function.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N6b8358192b874a2889336af6bc686429
17 Na033228ed3354ca285b4af82a37b6e06
18 sg:journal.1136555
19 schema:name A Generalization of Newman’s Result on the Zeros of Fourier Transforms
20 schema:pagination 449-467
21 schema:productId N1418e6cef40b4c438dc386741c5a8b7a
22 N84ebae1935bb4076857e6e7652cb2019
23 Nd86284a49ce846739026a85fa540601f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046515470
25 https://doi.org/10.1007/bf03321859
26 schema:sdDatePublished 2019-04-10T15:46
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N0ef9274e788545e2972e64610d93d526
29 schema:url http://link.springer.com/10.1007/BF03321859
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N04de437dab0d4308afd77b137ed31dd2 rdf:first sg:person.013173561433.03
34 rdf:rest rdf:nil
35 N0ef9274e788545e2972e64610d93d526 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N1418e6cef40b4c438dc386741c5a8b7a schema:name readcube_id
38 schema:value dd94fb5f9e2e9503b354c5166b5180eb9278a96bfab3a1bc54d7c9c8123d19fc
39 rdf:type schema:PropertyValue
40 N6b8358192b874a2889336af6bc686429 schema:volumeNumber 2
41 rdf:type schema:PublicationVolume
42 N84ebae1935bb4076857e6e7652cb2019 schema:name doi
43 schema:value 10.1007/bf03321859
44 rdf:type schema:PropertyValue
45 Na033228ed3354ca285b4af82a37b6e06 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Nacc5870a4b5643f68dd3784f590d065b rdf:first sg:person.013747505771.63
48 rdf:rest N04de437dab0d4308afd77b137ed31dd2
49 Nd86284a49ce846739026a85fa540601f schema:name dimensions_id
50 schema:value pub.1046515470
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136555 schema:issn 1617-9447
59 2195-3724
60 schema:name Computational Methods and Function Theory
61 rdf:type schema:Periodical
62 sg:person.013173561433.03 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
63 schema:familyName Kim
64 schema:givenName Young-One
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173561433.03
66 rdf:type schema:Person
67 sg:person.013747505771.63 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
68 schema:familyName Ki
69 schema:givenName Haseo
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747505771.63
71 rdf:type schema:Person
72 sg:pub.10.1023/a:1016677511798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050762404
73 https://doi.org/10.1023/a:1016677511798
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1006/jmaa.1994.1334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032072375
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1090/mmono/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567783
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1090/s0002-9939-1976-0434982-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017600975
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1215/s0012-7094-50-01720-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416786
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1515/crll.1927.158.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039928289
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
86 schema:name Department of Mathematics, Yonsei University, 120-749, Seoul, Korea
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
89 schema:name School of Mathematical Sciences, Seoul National University, 151-742, Seoul, Korea
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...