Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

Thomas K. DeLillo, Tobin A. Driscoll, Alan R. Elcrat, John A. Pfaltzgraff

ABSTRACT

We have recently derived a Schwarz-Christoffel formula for the conformal mapping of the exterior of a finite number of disks to the exterior of a set of polygonal curves [5]. In this work we show how to formulate a set of equations for determining the parameters of such a map. A number of examples are computed, including exteriors of multiple slits. We also recall the derivation of the mapping formulae and give a new formula for the doubly connected case. More... »

PAGES

301-315

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03321616

DOI

http://dx.doi.org/10.1007/bf03321616

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016808008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wichita State University", 
          "id": "https://www.grid.ac/institutes/grid.268246.c", 
          "name": [
            "Department of Mathematics and Statistics, Wichita State University, 67260-0033, Wichita, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeLillo", 
        "givenName": "Thomas K.", 
        "id": "sg:person.014125420133.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125420133.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wichita State University", 
          "id": "https://www.grid.ac/institutes/grid.268246.c", 
          "name": [
            "Department of Mathematics and Statistics, Wichita State University, 67260-0033, Wichita, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Driscoll", 
        "givenName": "Tobin A.", 
        "id": "sg:person.011217762063.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217762063.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Department of Mathematics, University of North Carolina, 27599, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elcrat", 
        "givenName": "Alan R.", 
        "id": "sg:person.0656644736.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656644736.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Mathematical Sciences, University of Delaware, 19716, Newark, DE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfaltzgraff", 
        "givenName": "John A.", 
        "id": "sg:person.011175633773.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175633773.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03321615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004176512", 
          "https://doi.org/10.1007/bf03321615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2005.1480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018888715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02789040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038149218", 
          "https://doi.org/10.1007/bf02789040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02789040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038149218", 
          "https://doi.org/10.1007/bf02789040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044139082", 
          "https://doi.org/10.1007/s002110050447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044818673", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044818673", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20010577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056791219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0901004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144500375280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144500375280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511546808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679386"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "We have recently derived a Schwarz-Christoffel formula for the conformal mapping of the exterior of a finite number of disks to the exterior of a set of polygonal curves [5]. In this work we show how to formulate a set of equations for determining the parameters of such a map. A number of examples are computed, including exteriors of multiple slits. We also recall the derivation of the mapping formulae and give a new formula for the doubly connected case.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03321616", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136555", 
        "issn": [
          "1617-9447", 
          "2195-3724"
        ], 
        "name": "Computational Methods and Function Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains", 
    "pagination": "301-315", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "501574caf73c9949d1591560b8df206392d12b27df9e54fefb2fbdbad78bc2fb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03321616"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016808008"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03321616", 
      "https://app.dimensions.ai/details/publication/pub.1016808008"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF03321616"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03321616'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03321616'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03321616'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03321616'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03321616 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N623ae708895a49808dad2fac275203dc
4 schema:citation sg:pub.10.1007/bf02789040
5 sg:pub.10.1007/bf03321615
6 sg:pub.10.1007/s002110050447
7 https://app.dimensions.ai/details/publication/pub.1044818673
8 https://doi.org/10.1017/cbo9780511546808
9 https://doi.org/10.1049/el:20010577
10 https://doi.org/10.1098/rspa.2005.1480
11 https://doi.org/10.1137/0901004
12 https://doi.org/10.1137/s0036144500375280
13 schema:datePublished 2006-12
14 schema:datePublishedReg 2006-12-01
15 schema:description We have recently derived a Schwarz-Christoffel formula for the conformal mapping of the exterior of a finite number of disks to the exterior of a set of polygonal curves [5]. In this work we show how to formulate a set of equations for determining the parameters of such a map. A number of examples are computed, including exteriors of multiple slits. We also recall the derivation of the mapping formulae and give a new formula for the doubly connected case.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N25fd7533d12f487c86b8d2f42fb57731
20 N578da72e470e488bb862732027a1a48b
21 sg:journal.1136555
22 schema:name Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains
23 schema:pagination 301-315
24 schema:productId N29f2516ee25f4dcd88c7e4da25dfa611
25 N53968e855ef04abda55cc6ddae5c14cf
26 Nafba74109fb84ace80ee8b44dfc99300
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016808008
28 https://doi.org/10.1007/bf03321616
29 schema:sdDatePublished 2019-04-10T16:34
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N17870544a1314e059f4e789ebfaa829f
32 schema:url http://link.springer.com/10.1007/BF03321616
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0d75c981ea2049038aa35bdfd0a6a089 rdf:first sg:person.0656644736.24
37 rdf:rest N3b270c59fd4448e3bc826b1939e0198b
38 N17870544a1314e059f4e789ebfaa829f schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N25fd7533d12f487c86b8d2f42fb57731 schema:volumeNumber 6
41 rdf:type schema:PublicationVolume
42 N29f2516ee25f4dcd88c7e4da25dfa611 schema:name dimensions_id
43 schema:value pub.1016808008
44 rdf:type schema:PropertyValue
45 N3b270c59fd4448e3bc826b1939e0198b rdf:first sg:person.011175633773.31
46 rdf:rest rdf:nil
47 N509b8a89094e45f0b4d4263ed98e2ad5 rdf:first sg:person.011217762063.01
48 rdf:rest N0d75c981ea2049038aa35bdfd0a6a089
49 N53968e855ef04abda55cc6ddae5c14cf schema:name readcube_id
50 schema:value 501574caf73c9949d1591560b8df206392d12b27df9e54fefb2fbdbad78bc2fb
51 rdf:type schema:PropertyValue
52 N578da72e470e488bb862732027a1a48b schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 N623ae708895a49808dad2fac275203dc rdf:first sg:person.014125420133.27
55 rdf:rest N509b8a89094e45f0b4d4263ed98e2ad5
56 Nafba74109fb84ace80ee8b44dfc99300 schema:name doi
57 schema:value 10.1007/bf03321616
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136555 schema:issn 1617-9447
66 2195-3724
67 schema:name Computational Methods and Function Theory
68 rdf:type schema:Periodical
69 sg:person.011175633773.31 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
70 schema:familyName Pfaltzgraff
71 schema:givenName John A.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175633773.31
73 rdf:type schema:Person
74 sg:person.011217762063.01 schema:affiliation https://www.grid.ac/institutes/grid.268246.c
75 schema:familyName Driscoll
76 schema:givenName Tobin A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217762063.01
78 rdf:type schema:Person
79 sg:person.014125420133.27 schema:affiliation https://www.grid.ac/institutes/grid.268246.c
80 schema:familyName DeLillo
81 schema:givenName Thomas K.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125420133.27
83 rdf:type schema:Person
84 sg:person.0656644736.24 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
85 schema:familyName Elcrat
86 schema:givenName Alan R.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656644736.24
88 rdf:type schema:Person
89 sg:pub.10.1007/bf02789040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038149218
90 https://doi.org/10.1007/bf02789040
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf03321615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004176512
93 https://doi.org/10.1007/bf03321615
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s002110050447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044139082
96 https://doi.org/10.1007/s002110050447
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1044818673 schema:CreativeWork
99 https://doi.org/10.1017/cbo9780511546808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679386
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1049/el:20010577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056791219
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1098/rspa.2005.1480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018888715
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1137/0901004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855487
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1137/s0036144500375280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877737
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.268246.c schema:alternateName Wichita State University
110 schema:name Department of Mathematics and Statistics, Wichita State University, 67260-0033, Wichita, KS, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
113 schema:name Department of Mathematical Sciences, University of Delaware, 19716, Newark, DE, USA
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
116 schema:name Department of Mathematics, University of North Carolina, 27599, Chapel Hill, NC, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...