Grain growth stagnation by inclusions or pores View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-09

AUTHORS

C. H. Wörner, P. M. Hazzledine

ABSTRACT

The mechanism of grain growth stagnation by second-phase particles or pores, also known as Zener pinning, has been analyzed through a variety of theoretical approaches. These range from Zener’s original analysis through recent advances made by computer modeling. The Zener phenomenon is routinely utilized in metals and ceramics processing to prevent grain growth and to take full advantage of the small grain size in the mechanical properties of finished polycrystalline aggregates. On the other hand, in the processing of electrical steels the final product must have a coarse grain size, and an appropriate amount of precipitates helps to achieve this goal. More... »

PAGES

16-20

References to SciGraph publications

  • 1989-01. Sintering of Sb2O3-doped ZnO in JOURNAL OF MATERIALS SCIENCE
  • 1991-08. Extension of Gladman's model for abnormal grain growth in JOURNAL OF MATERIALS RESEARCH
  • 1982-07. Grain growth in ice in IL NUOVO CIMENTO C
  • 1991-08. Grain growth in 18Ni 1800 MPa maraging steel in JOURNAL OF MATERIALS SCIENCE
  • 1980-11. Theory of inclusion controlled grain growth in JOURNAL OF MATERIALS SCIENCE
  • 1990-08. Degree of pore-grain boundary contact during sintering in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-03. Processing techniques for bulk high-Tc in JOM
  • 1989-01. Effects of second-phase particles on coarsening of austenite in 0.15 Pct carbon steels in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1975-04. The relationship between the size of cementite particles and the subgrain size in quenched-and-tempered steels in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1983-11. Grain growth in samples of aluminum containing alumina particles in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-01. Isothermal particle growth in two-phase titanium alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-07. Effects of growth rate on carbides and microporosity in DS200 + Hf superalloy in JOURNAL OF MATERIALS SCIENCE
  • 1989-07. Microstructure development in Sb2O3-doped ZnO in JOURNAL OF MATERIALS SCIENCE
  • 1988-04. Grain boundary pinning in two-phase materials in CZECHOSLOVAK JOURNAL OF PHYSICS
  • 1989-01. The effect of titanium and nitrogen contents on the austenite grain coarsening temperature in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf03222320

    DOI

    http://dx.doi.org/10.1007/bf03222320

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006292336


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto de F\u00edsica, Universidad Cat\u00f3lica de Valpara\u00edso, Chile", 
              "id": "http://www.grid.ac/institutes/grid.8170.e", 
              "name": [
                "Instituto de F\u00edsica, Universidad Cat\u00f3lica de Valpara\u00edso, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "W\u00f6rner", 
            "givenName": "C. H.", 
            "id": "sg:person.013271117341.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271117341.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universal Energy Systems, Dayton, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.296952.3", 
              "name": [
                "Universal Energy Systems, Dayton, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hazzledine", 
            "givenName": "P. M.", 
            "id": "sg:person.016127166303.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127166303.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00660940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024928535", 
              "https://doi.org/10.1007/bf00660940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01605420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048911994", 
              "https://doi.org/10.1007/bf01605420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004284337", 
              "https://doi.org/10.1007/bf02647489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047423903", 
              "https://doi.org/10.1007/bf02672318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02561650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047930426", 
              "https://doi.org/10.1007/bf02561650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021208486", 
              "https://doi.org/10.1007/bf02647492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03220156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052600024", 
              "https://doi.org/10.1007/bf03220156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00550551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050738551", 
              "https://doi.org/10.1007/bf00550551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02402961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009538884", 
              "https://doi.org/10.1007/bf02402961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1991.1773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040887215", 
              "https://doi.org/10.1557/jmr.1991.1773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00660956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038309251", 
              "https://doi.org/10.1007/bf00660956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01174529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024114303", 
              "https://doi.org/10.1007/bf01174529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001790050", 
              "https://doi.org/10.1007/bf02647873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01184986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051266866", 
              "https://doi.org/10.1007/bf01184986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02663297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047446125", 
              "https://doi.org/10.1007/bf02663297"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-09", 
        "datePublishedReg": "1992-09-01", 
        "description": "The mechanism of grain growth stagnation by second-phase particles or pores, also known as Zener pinning, has been analyzed through a variety of theoretical approaches. These range from Zener\u2019s original analysis through recent advances made by computer modeling. The Zener phenomenon is routinely utilized in metals and ceramics processing to prevent grain growth and to take full advantage of the small grain size in the mechanical properties of finished polycrystalline aggregates. On the other hand, in the processing of electrical steels the final product must have a coarse grain size, and an appropriate amount of precipitates helps to achieve this goal.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf03222320", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "grain growth stagnation", 
          "second-phase particles", 
          "grain size", 
          "small grain size", 
          "ceramic processing", 
          "electrical steel", 
          "mechanical properties", 
          "coarse grain size", 
          "grain growth", 
          "Zener pinning", 
          "polycrystalline aggregates", 
          "growth stagnation", 
          "appropriate amount", 
          "pores", 
          "final product", 
          "steel", 
          "computer modeling", 
          "processing", 
          "full advantage", 
          "precipitates", 
          "particles", 
          "metals", 
          "modeling", 
          "pinning", 
          "properties", 
          "size", 
          "theoretical approach", 
          "recent advances", 
          "advantages", 
          "phenomenon", 
          "aggregates", 
          "stagnation", 
          "amount", 
          "products", 
          "approach", 
          "analysis", 
          "inclusion", 
          "mechanism", 
          "original analysis", 
          "advances", 
          "growth", 
          "hand", 
          "variety", 
          "goal", 
          "Zener\u2019s original analysis", 
          "Zener phenomenon", 
          "finished polycrystalline aggregates"
        ], 
        "name": "Grain growth stagnation by inclusions or pores", 
        "pagination": "16-20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006292336"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf03222320"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf03222320", 
          "https://app.dimensions.ai/details/publication/pub.1006292336"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_252.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf03222320"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03222320'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03222320'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03222320'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03222320'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      22 PREDICATES      88 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf03222320 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd7a54e709c894265bd06111666fc782b
    4 schema:citation sg:pub.10.1007/bf00550551
    5 sg:pub.10.1007/bf00660940
    6 sg:pub.10.1007/bf00660956
    7 sg:pub.10.1007/bf01174529
    8 sg:pub.10.1007/bf01184986
    9 sg:pub.10.1007/bf01605420
    10 sg:pub.10.1007/bf02402961
    11 sg:pub.10.1007/bf02561650
    12 sg:pub.10.1007/bf02647489
    13 sg:pub.10.1007/bf02647492
    14 sg:pub.10.1007/bf02647873
    15 sg:pub.10.1007/bf02663297
    16 sg:pub.10.1007/bf02672318
    17 sg:pub.10.1007/bf03220156
    18 sg:pub.10.1557/jmr.1991.1773
    19 schema:datePublished 1992-09
    20 schema:datePublishedReg 1992-09-01
    21 schema:description The mechanism of grain growth stagnation by second-phase particles or pores, also known as Zener pinning, has been analyzed through a variety of theoretical approaches. These range from Zener’s original analysis through recent advances made by computer modeling. The Zener phenomenon is routinely utilized in metals and ceramics processing to prevent grain growth and to take full advantage of the small grain size in the mechanical properties of finished polycrystalline aggregates. On the other hand, in the processing of electrical steels the final product must have a coarse grain size, and an appropriate amount of precipitates helps to achieve this goal.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nd3b4bbe81b094f45be38015d446921ea
    26 Nf398c5c7afb34289a8a87288f8856756
    27 sg:journal.1042541
    28 schema:keywords Zener phenomenon
    29 Zener pinning
    30 Zener’s original analysis
    31 advances
    32 advantages
    33 aggregates
    34 amount
    35 analysis
    36 approach
    37 appropriate amount
    38 ceramic processing
    39 coarse grain size
    40 computer modeling
    41 electrical steel
    42 final product
    43 finished polycrystalline aggregates
    44 full advantage
    45 goal
    46 grain growth
    47 grain growth stagnation
    48 grain size
    49 growth
    50 growth stagnation
    51 hand
    52 inclusion
    53 mechanical properties
    54 mechanism
    55 metals
    56 modeling
    57 original analysis
    58 particles
    59 phenomenon
    60 pinning
    61 polycrystalline aggregates
    62 pores
    63 precipitates
    64 processing
    65 products
    66 properties
    67 recent advances
    68 second-phase particles
    69 size
    70 small grain size
    71 stagnation
    72 steel
    73 theoretical approach
    74 variety
    75 schema:name Grain growth stagnation by inclusions or pores
    76 schema:pagination 16-20
    77 schema:productId N83a63a3fff4a4466b997a14db37bd4b4
    78 N83c6fd66c78c45f0aaa5976708703fa6
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006292336
    80 https://doi.org/10.1007/bf03222320
    81 schema:sdDatePublished 2021-11-01T18:00
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N1e3ff6b8e1284aa1b9684092782968ae
    84 schema:url https://doi.org/10.1007/bf03222320
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N1e3ff6b8e1284aa1b9684092782968ae schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N83a63a3fff4a4466b997a14db37bd4b4 schema:name doi
    91 schema:value 10.1007/bf03222320
    92 rdf:type schema:PropertyValue
    93 N83c6fd66c78c45f0aaa5976708703fa6 schema:name dimensions_id
    94 schema:value pub.1006292336
    95 rdf:type schema:PropertyValue
    96 Nd3b4bbe81b094f45be38015d446921ea schema:issueNumber 9
    97 rdf:type schema:PublicationIssue
    98 Nd7a54e709c894265bd06111666fc782b rdf:first sg:person.013271117341.32
    99 rdf:rest Ndfb52c71f12e4d968556800c4a599e8b
    100 Ndfb52c71f12e4d968556800c4a599e8b rdf:first sg:person.016127166303.20
    101 rdf:rest rdf:nil
    102 Nf398c5c7afb34289a8a87288f8856756 schema:volumeNumber 44
    103 rdf:type schema:PublicationVolume
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Materials Engineering
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1042541 schema:issn 1047-4838
    111 1543-1851
    112 schema:name JOM
    113 schema:publisher Springer Nature
    114 rdf:type schema:Periodical
    115 sg:person.013271117341.32 schema:affiliation grid-institutes:grid.8170.e
    116 schema:familyName Wörner
    117 schema:givenName C. H.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271117341.32
    119 rdf:type schema:Person
    120 sg:person.016127166303.20 schema:affiliation grid-institutes:grid.296952.3
    121 schema:familyName Hazzledine
    122 schema:givenName P. M.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127166303.20
    124 rdf:type schema:Person
    125 sg:pub.10.1007/bf00550551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050738551
    126 https://doi.org/10.1007/bf00550551
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf00660940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024928535
    129 https://doi.org/10.1007/bf00660940
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf00660956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309251
    132 https://doi.org/10.1007/bf00660956
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01174529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024114303
    135 https://doi.org/10.1007/bf01174529
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf01184986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051266866
    138 https://doi.org/10.1007/bf01184986
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf01605420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911994
    141 https://doi.org/10.1007/bf01605420
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02402961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009538884
    144 https://doi.org/10.1007/bf02402961
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02561650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047930426
    147 https://doi.org/10.1007/bf02561650
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf02647489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004284337
    150 https://doi.org/10.1007/bf02647489
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf02647492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021208486
    153 https://doi.org/10.1007/bf02647492
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf02647873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001790050
    156 https://doi.org/10.1007/bf02647873
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bf02663297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047446125
    159 https://doi.org/10.1007/bf02663297
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf02672318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047423903
    162 https://doi.org/10.1007/bf02672318
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf03220156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052600024
    165 https://doi.org/10.1007/bf03220156
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1557/jmr.1991.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887215
    168 https://doi.org/10.1557/jmr.1991.1773
    169 rdf:type schema:CreativeWork
    170 grid-institutes:grid.296952.3 schema:alternateName Universal Energy Systems, Dayton, Ohio, USA
    171 schema:name Universal Energy Systems, Dayton, Ohio, USA
    172 rdf:type schema:Organization
    173 grid-institutes:grid.8170.e schema:alternateName Instituto de Física, Universidad Católica de Valparaíso, Chile
    174 schema:name Instituto de Física, Universidad Católica de Valparaíso, Chile
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...