An advanced ANN model for predicting the rotational behaviour of semi-rigid composite joints in fire using the back-propagation paradigm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

Khalifa S. Al-Jabri, Saleh M. Al-Alawi

ABSTRACT

This paper describes an artificial neural networking (ANN) model developed to predict the behaviour of semi-rigid composite joints at elevated temperature. Three different semi-rigid composite joints were selected, two flexible end-plates and one flush end-plate. Seventeen different parameters were selected as input parameters representing the geometrical and mechanical properties of the joints as well as the joint’s temperature and the applied loading, and used to model the rotational capacity of the joints with increasing temperatures. Data from experimental fire tests were used for training and testing the ANN model. Results from nine experimental fire tests were evaluated with a total of 280 experimental cases. The results showed that the R2 value for the training and testing sets were 0.998 and 0.97, respectively. This indicates that results from the ANN model compared well with the experimental results demonstrating the capability of the ANN simulation techniques in predicting the behaviour of semi-rigid composite joints in fire. The described model can be modified to study other important parameters that can have considerable effect on the behaviour of joints at elevated temperatures such as temperature gradient, axial restraints, etc. More... »

PAGES

337-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03215842

DOI

http://dx.doi.org/10.1007/bf03215842

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049911052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sultan Qaboos University", 
          "id": "https://www.grid.ac/institutes/grid.412846.d", 
          "name": [
            "Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, PC 123, Al-Khod, Oman"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Jabri", 
        "givenName": "Khalifa S.", 
        "id": "sg:person.016131156661.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131156661.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sultan Qaboos University", 
          "id": "https://www.grid.ac/institutes/grid.412846.d", 
          "name": [
            "Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, PC 123, Al-Khod, Oman"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Alawi", 
        "givenName": "Saleh M.", 
        "id": "sg:person.012343467607.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343467607.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0379-7112(01)00065-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008407805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008791322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2006.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2007.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010341121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2007.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014127514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2007.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014694647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0954-1810(94)00011-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028083880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028411426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-2619(00)00005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039845496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2006.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042587061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/175247.175256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044714778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048624011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2005.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051256763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(1999)125:10(1188)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057599442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2684922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070058214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.1991.184056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086285334"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "This paper describes an artificial neural networking (ANN) model developed to predict the behaviour of semi-rigid composite joints at elevated temperature. Three different semi-rigid composite joints were selected, two flexible end-plates and one flush end-plate. Seventeen different parameters were selected as input parameters representing the geometrical and mechanical properties of the joints as well as the joint\u2019s temperature and the applied loading, and used to model the rotational capacity of the joints with increasing temperatures. Data from experimental fire tests were used for training and testing the ANN model. Results from nine experimental fire tests were evaluated with a total of 280 experimental cases. The results showed that the R2 value for the training and testing sets were 0.998 and 0.97, respectively. This indicates that results from the ANN model compared well with the experimental results demonstrating the capability of the ANN simulation techniques in predicting the behaviour of semi-rigid composite joints in fire. The described model can be modified to study other important parameters that can have considerable effect on the behaviour of joints at elevated temperatures such as temperature gradient, axial restraints, etc.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03215842", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136691", 
        "issn": [
          "1598-2351", 
          "2093-6311"
        ], 
        "name": "International Journal of Steel Structures", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "An advanced ANN model for predicting the rotational behaviour of semi-rigid composite joints in fire using the back-propagation paradigm", 
    "pagination": "337-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "edc29fa9a58a8a88a3def19a540b2490085acd654f73aa02d40e5f0eb6b4450b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03215842"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049911052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03215842", 
      "https://app.dimensions.ai/details/publication/pub.1049911052"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03215842"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03215842'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03215842'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03215842'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03215842'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03215842 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf3ef232f78884bffa93617b2d73a907f
4 schema:citation https://doi.org/10.1016/0954-1810(94)00011-s
5 https://doi.org/10.1016/j.engstruct.2005.12.009
6 https://doi.org/10.1016/j.firesaf.2007.01.002
7 https://doi.org/10.1016/j.jcsr.2003.09.006
8 https://doi.org/10.1016/j.jcsr.2004.09.001
9 https://doi.org/10.1016/j.jcsr.2005.09.011
10 https://doi.org/10.1016/j.jcsr.2006.01.003
11 https://doi.org/10.1016/j.jcsr.2006.01.008
12 https://doi.org/10.1016/j.jcsr.2007.01.013
13 https://doi.org/10.1016/j.jcsr.2007.12.001
14 https://doi.org/10.1016/s0306-2619(00)00005-2
15 https://doi.org/10.1016/s0379-7112(01)00065-0
16 https://doi.org/10.1061/(asce)0733-9445(1999)125:10(1188)
17 https://doi.org/10.1109/hicss.1991.184056
18 https://doi.org/10.1145/175247.175256
19 https://doi.org/10.2307/2684922
20 schema:datePublished 2010-12
21 schema:datePublishedReg 2010-12-01
22 schema:description This paper describes an artificial neural networking (ANN) model developed to predict the behaviour of semi-rigid composite joints at elevated temperature. Three different semi-rigid composite joints were selected, two flexible end-plates and one flush end-plate. Seventeen different parameters were selected as input parameters representing the geometrical and mechanical properties of the joints as well as the joint’s temperature and the applied loading, and used to model the rotational capacity of the joints with increasing temperatures. Data from experimental fire tests were used for training and testing the ANN model. Results from nine experimental fire tests were evaluated with a total of 280 experimental cases. The results showed that the R2 value for the training and testing sets were 0.998 and 0.97, respectively. This indicates that results from the ANN model compared well with the experimental results demonstrating the capability of the ANN simulation techniques in predicting the behaviour of semi-rigid composite joints in fire. The described model can be modified to study other important parameters that can have considerable effect on the behaviour of joints at elevated temperatures such as temperature gradient, axial restraints, etc.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N8b65f2f77dcb44cbbf11a7ff5fa07a56
27 Nb256855f2b29462893cfcd2c9cd8bf8d
28 sg:journal.1136691
29 schema:name An advanced ANN model for predicting the rotational behaviour of semi-rigid composite joints in fire using the back-propagation paradigm
30 schema:pagination 337-347
31 schema:productId N2b272a28b910413aa2e2c92554d139f6
32 Na46a251e498f4c6e9f3cd4ee13d2ff62
33 Nbfd2ce52ae2a455db235f4fe929f6106
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911052
35 https://doi.org/10.1007/bf03215842
36 schema:sdDatePublished 2019-04-10T23:29
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N140cfb903e1a4e23a4a654223f422deb
39 schema:url http://link.springer.com/10.1007%2FBF03215842
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N140cfb903e1a4e23a4a654223f422deb schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N2b272a28b910413aa2e2c92554d139f6 schema:name dimensions_id
46 schema:value pub.1049911052
47 rdf:type schema:PropertyValue
48 N5201db239f764764a828393df389f621 rdf:first sg:person.012343467607.36
49 rdf:rest rdf:nil
50 N8b65f2f77dcb44cbbf11a7ff5fa07a56 schema:volumeNumber 10
51 rdf:type schema:PublicationVolume
52 Na46a251e498f4c6e9f3cd4ee13d2ff62 schema:name doi
53 schema:value 10.1007/bf03215842
54 rdf:type schema:PropertyValue
55 Nb256855f2b29462893cfcd2c9cd8bf8d schema:issueNumber 4
56 rdf:type schema:PublicationIssue
57 Nbfd2ce52ae2a455db235f4fe929f6106 schema:name readcube_id
58 schema:value edc29fa9a58a8a88a3def19a540b2490085acd654f73aa02d40e5f0eb6b4450b
59 rdf:type schema:PropertyValue
60 Nf3ef232f78884bffa93617b2d73a907f rdf:first sg:person.016131156661.68
61 rdf:rest N5201db239f764764a828393df389f621
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1136691 schema:issn 1598-2351
69 2093-6311
70 schema:name International Journal of Steel Structures
71 rdf:type schema:Periodical
72 sg:person.012343467607.36 schema:affiliation https://www.grid.ac/institutes/grid.412846.d
73 schema:familyName Al-Alawi
74 schema:givenName Saleh M.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343467607.36
76 rdf:type schema:Person
77 sg:person.016131156661.68 schema:affiliation https://www.grid.ac/institutes/grid.412846.d
78 schema:familyName Al-Jabri
79 schema:givenName Khalifa S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131156661.68
81 rdf:type schema:Person
82 https://doi.org/10.1016/0954-1810(94)00011-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1028083880
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.engstruct.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008791322
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.firesaf.2007.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010341121
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.jcsr.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048624011
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.jcsr.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028411426
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jcsr.2005.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051256763
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jcsr.2006.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092589
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jcsr.2006.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042587061
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jcsr.2007.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014127514
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jcsr.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014694647
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0306-2619(00)00005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039845496
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0379-7112(01)00065-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008407805
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1061/(asce)0733-9445(1999)125:10(1188) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057599442
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/hicss.1991.184056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086285334
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/175247.175256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044714778
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2307/2684922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070058214
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.412846.d schema:alternateName Sultan Qaboos University
115 schema:name Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, PC 123, Al-Khod, Oman
116 Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, PC 123, Al-Khod, Oman
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...