Interfering states and narrow resonances at high excitation energy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

M. Müller, S. E. Muraviev, I. Rotter, V. V. Sokolov

ABSTRACT

A schematic model of multipole giant resonances is considered which treats the external interaction of the resonance states via common decay channels on the same footing as the internal residual interaction. At high excitation energy, the cross-section pattern is governed by the phenomenon of resonance trapping, i.e. by the formation of different time scales. The interplay of internal and external collectivity influences significantly the distribution of the dipole strengths over the single states as well as their widths and positions in energy. A realistic calculation is performed for208Pb. The strength function of the 4ℏω isoscalar monopole giant resonance is obtained in the framework of the random phase approximation in the continuum. The oneparticle continuum is shown to play an important role in the formation of the structure of the strength function. Some narrow resonances appear due to resonance trapping. More... »

PAGES

705-708

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03185340

DOI

http://dx.doi.org/10.1007/bf03185340

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085908924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "M.", 
        "id": "sg:person.01117371407.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117371407.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, D-01187, Dresden, Germany", 
            "Moscow Engineering Physics Institute, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muraviev", 
        "givenName": "S. E.", 
        "id": "sg:person.01024577215.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024577215.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, D-01187, Dresden, Germany", 
            "Institut f\u00fcr Theoretische Physik, Technische Universit\u00e4t Dresden, D-01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotter", 
        "givenName": "I.", 
        "id": "sg:person.01014732025.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokolov", 
        "givenName": "V. V.", 
        "id": "sg:person.011716222011.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716222011.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0034-4885/54/4/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000209557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.56.1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.56.1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "A schematic model of multipole giant resonances is considered which treats the external interaction of the resonance states via common decay channels on the same footing as the internal residual interaction. At high excitation energy, the cross-section pattern is governed by the phenomenon of resonance trapping, i.e. by the formation of different time scales. The interplay of internal and external collectivity influences significantly the distribution of the dipole strengths over the single states as well as their widths and positions in energy. A realistic calculation is performed for208Pb. The strength function of the 4\u210f\u03c9 isoscalar monopole giant resonance is obtained in the framework of the random phase approximation in the continuum. The oneparticle continuum is shown to play an important role in the formation of the structure of the strength function. Some narrow resonances appear due to resonance trapping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03185340", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336107", 
        "issn": [
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6-7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "111"
      }
    ], 
    "name": "Interfering states and narrow resonances at high excitation energy", 
    "pagination": "705-708", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b0512ff55b8dbf980b6fc42e928b4bd678138109065057341c09a09e73b1147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03185340"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085908924"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03185340", 
      "https://app.dimensions.ai/details/publication/pub.1085908924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF03185340"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03185340'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03185340'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03185340'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03185340'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03185340 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nef719270d1674855acdf0e2638cd0d05
4 schema:citation https://doi.org/10.1088/0034-4885/54/4/003
5 https://doi.org/10.1103/physrevc.56.1031
6 schema:datePublished 1998-06
7 schema:datePublishedReg 1998-06-01
8 schema:description A schematic model of multipole giant resonances is considered which treats the external interaction of the resonance states via common decay channels on the same footing as the internal residual interaction. At high excitation energy, the cross-section pattern is governed by the phenomenon of resonance trapping, i.e. by the formation of different time scales. The interplay of internal and external collectivity influences significantly the distribution of the dipole strengths over the single states as well as their widths and positions in energy. A realistic calculation is performed for208Pb. The strength function of the 4ℏω isoscalar monopole giant resonance is obtained in the framework of the random phase approximation in the continuum. The oneparticle continuum is shown to play an important role in the formation of the structure of the strength function. Some narrow resonances appear due to resonance trapping.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9a78dac805a540f48defc7ff79451e0d
13 Ne8c236d1eed14e27907bd9ff61a1bcea
14 sg:journal.1336107
15 schema:name Interfering states and narrow resonances at high excitation energy
16 schema:pagination 705-708
17 schema:productId N94fe478ec6b4409ebaad4c08388e07bc
18 Nd61479c8ed18461da4dd75870f31ceb9
19 Ne63171a4bca440f2be273c1ae4de7eaf
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085908924
21 https://doi.org/10.1007/bf03185340
22 schema:sdDatePublished 2019-04-10T20:40
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Na4fff3c90bc243a7a0e6e3b369519e69
25 schema:url http://link.springer.com/10.1007/BF03185340
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1083ada25a4d4eb982355dd1902e1325 rdf:first sg:person.01014732025.58
30 rdf:rest N61867baaa6a6406ebb815675518edf2f
31 N5317671d18164f1cb07d96900ca5bada rdf:first sg:person.01024577215.95
32 rdf:rest N1083ada25a4d4eb982355dd1902e1325
33 N61867baaa6a6406ebb815675518edf2f rdf:first sg:person.011716222011.90
34 rdf:rest rdf:nil
35 N94fe478ec6b4409ebaad4c08388e07bc schema:name dimensions_id
36 schema:value pub.1085908924
37 rdf:type schema:PropertyValue
38 N9a78dac805a540f48defc7ff79451e0d schema:issueNumber 6-7
39 rdf:type schema:PublicationIssue
40 Na4fff3c90bc243a7a0e6e3b369519e69 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nd61479c8ed18461da4dd75870f31ceb9 schema:name doi
43 schema:value 10.1007/bf03185340
44 rdf:type schema:PropertyValue
45 Ne63171a4bca440f2be273c1ae4de7eaf schema:name readcube_id
46 schema:value 5b0512ff55b8dbf980b6fc42e928b4bd678138109065057341c09a09e73b1147
47 rdf:type schema:PropertyValue
48 Ne8c236d1eed14e27907bd9ff61a1bcea schema:volumeNumber 111
49 rdf:type schema:PublicationVolume
50 Nef719270d1674855acdf0e2638cd0d05 rdf:first sg:person.01117371407.29
51 rdf:rest N5317671d18164f1cb07d96900ca5bada
52 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
53 schema:name Physical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
56 schema:name Other Physical Sciences
57 rdf:type schema:DefinedTerm
58 sg:journal.1336107 schema:issn 1826-9869
59 schema:name Il Nuovo Cimento A (1971-1996)
60 rdf:type schema:Periodical
61 sg:person.01014732025.58 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
62 schema:familyName Rotter
63 schema:givenName I.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58
65 rdf:type schema:Person
66 sg:person.01024577215.95 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
67 schema:familyName Muraviev
68 schema:givenName S. E.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024577215.95
70 rdf:type schema:Person
71 sg:person.01117371407.29 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
72 schema:familyName Müller
73 schema:givenName M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117371407.29
75 rdf:type schema:Person
76 sg:person.011716222011.90 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
77 schema:familyName Sokolov
78 schema:givenName V. V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716222011.90
80 rdf:type schema:Person
81 https://doi.org/10.1088/0034-4885/54/4/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000209557
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrevc.56.1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027291176
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
86 schema:name Max-Planck-Institut für Physik komplexer Systeme, D-01187, Dresden, Germany
87 Moscow Engineering Physics Institute, 115409, Moscow, Russia
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
90 schema:name Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
93 schema:name Max-Planck-Institut für Physik komplexer Systeme, D-01187, Dresden, Germany
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
96 schema:name Institut für Theoretische Physik, Technische Universität Dresden, D-01062, Dresden, Germany
97 Max-Planck-Institut für Physik komplexer Systeme, D-01187, Dresden, Germany
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...