Fast design of the QP-based optimal trajectory for a motion simulator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Young Man Cho, Hwa Soo Kim, Ik Kyu Kim, Jong Jin Woo, Jongwon Kim

ABSTRACT

The main difficulty in realizing a motion simulator comes from the constraints on its workspace. The so-called washout filter prevents a simulator from being driven to go off its pre-determined boundaries and generate excessive torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommodated, this paper presents a novel approach that fully exploits the simulator workspace and thereby reproduces the real-world sensations with high fidelity. The washout filter converts the real-world input trajectory as a realizable one that satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions experienced in the real world and on the motion simulator. The control objective is to reduce the computational burdens by using the QP algorithm. The proposed approach formulates the task of designing a washout filter as a quadratic programming (QP). The direct approach to the solution of the QP often results in a computational burden that amounts toO(N3) flops andO(N2) storage space (N=104 ∼ 105, typically). By judiciously exploiting the Toeplitz structures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational burdens toO(Nlog2N) flops andO(N) storage space. The extensive simulation studies on the Eclipse-II motion simulator at Seoul National University assure that the QP-based fast algorithm outperforms the existing ones in reproducing the real-world sensations. More... »

PAGES

1973

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03177455

DOI

http://dx.doi.org/10.1007/bf03177455

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036391991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Young Man", 
        "id": "sg:person.012176153337.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hwa Soo", 
        "id": "sg:person.016513155261.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513155261.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ik Kyu", 
        "id": "sg:person.07476057131.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476057131.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woo", 
        "givenName": "Jong Jin", 
        "id": "sg:person.010273437531.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273437531.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jongwon", 
        "id": "sg:person.013611426734.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02916145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094054", 
          "https://doi.org/10.1007/bf02916145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02916145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094054", 
          "https://doi.org/10.1007/bf02916145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.20846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005660191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02984393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018219278", 
          "https://doi.org/10.1007/bf02984393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2000-4291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024424282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tra.2002.1019472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1997.606801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093184714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "The main difficulty in realizing a motion simulator comes from the constraints on its workspace. The so-called washout filter prevents a simulator from being driven to go off its pre-determined boundaries and generate excessive torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommodated, this paper presents a novel approach that fully exploits the simulator workspace and thereby reproduces the real-world sensations with high fidelity. The washout filter converts the real-world input trajectory as a realizable one that satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions experienced in the real world and on the motion simulator. The control objective is to reduce the computational burdens by using the QP algorithm. The proposed approach formulates the task of designing a washout filter as a quadratic programming (QP). The direct approach to the solution of the QP often results in a computational burden that amounts toO(N3) flops andO(N2) storage space (N=104 \u223c 105, typically). By judiciously exploiting the Toeplitz structures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational burdens toO(Nlog2N) flops andO(N) storage space. The extensive simulation studies on the Eclipse-II motion simulator at Seoul National University assure that the QP-based fast algorithm outperforms the existing ones in reproducing the real-world sensations.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/bf03177455", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Fast design of the QP-based optimal trajectory for a motion simulator", 
    "pagination": "1973", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad5b9c994d0f5f1db2940450245a1fa928181e107046aef57d303cfc59639d7c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03177455"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036391991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03177455", 
      "https://app.dimensions.ai/details/publication/pub.1036391991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13104_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03177455"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03177455'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03177455'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03177455'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03177455'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03177455 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbc7d8682e09242b7891a12d47e7dcc54
4 schema:citation sg:pub.10.1007/bf02916145
5 sg:pub.10.1007/bf02984393
6 https://doi.org/10.1109/robot.1997.606801
7 https://doi.org/10.1109/tra.2002.1019472
8 https://doi.org/10.2514/3.20846
9 https://doi.org/10.2514/6.2000-4291
10 schema:datePublished 2007-12
11 schema:datePublishedReg 2007-12-01
12 schema:description The main difficulty in realizing a motion simulator comes from the constraints on its workspace. The so-called washout filter prevents a simulator from being driven to go off its pre-determined boundaries and generate excessive torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommodated, this paper presents a novel approach that fully exploits the simulator workspace and thereby reproduces the real-world sensations with high fidelity. The washout filter converts the real-world input trajectory as a realizable one that satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions experienced in the real world and on the motion simulator. The control objective is to reduce the computational burdens by using the QP algorithm. The proposed approach formulates the task of designing a washout filter as a quadratic programming (QP). The direct approach to the solution of the QP often results in a computational burden that amounts toO(N3) flops andO(N2) storage space (N=104 ∼ 105, typically). By judiciously exploiting the Toeplitz structures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational burdens toO(Nlog2N) flops andO(N) storage space. The extensive simulation studies on the Eclipse-II motion simulator at Seoul National University assure that the QP-based fast algorithm outperforms the existing ones in reproducing the real-world sensations.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N8a38dd8d283b4600bb70ff69edcf2d20
17 Nd1a346115abb40cc947e7c30a2422d2e
18 sg:journal.1295111
19 schema:name Fast design of the QP-based optimal trajectory for a motion simulator
20 schema:pagination 1973
21 schema:productId N09f495cf7d024c00a3e8b1d6f7a8f514
22 N0e9e6ad80f8f4ef9a1131f4077175cde
23 N5f2351a2b4914eb4b3cb33b2ca4bdcc8
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036391991
25 https://doi.org/10.1007/bf03177455
26 schema:sdDatePublished 2019-04-11T14:33
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N9322f967a146485591c165fafd687fb1
29 schema:url http://link.springer.com/10.1007%2FBF03177455
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N09f495cf7d024c00a3e8b1d6f7a8f514 schema:name doi
34 schema:value 10.1007/bf03177455
35 rdf:type schema:PropertyValue
36 N0e9e6ad80f8f4ef9a1131f4077175cde schema:name readcube_id
37 schema:value ad5b9c994d0f5f1db2940450245a1fa928181e107046aef57d303cfc59639d7c
38 rdf:type schema:PropertyValue
39 N299b4806d8a64c1187f7c84ce7830961 rdf:first sg:person.07476057131.88
40 rdf:rest Nd03c4d9f37fd4bb38c8063ccb93b2796
41 N5f2351a2b4914eb4b3cb33b2ca4bdcc8 schema:name dimensions_id
42 schema:value pub.1036391991
43 rdf:type schema:PropertyValue
44 N8a38dd8d283b4600bb70ff69edcf2d20 schema:issueNumber 12
45 rdf:type schema:PublicationIssue
46 N9322f967a146485591c165fafd687fb1 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nb0314a267b5b4a549408f4f6166c36e1 rdf:first sg:person.016513155261.16
49 rdf:rest N299b4806d8a64c1187f7c84ce7830961
50 Nb51f1eca21a1440fb607b4631b98ee17 rdf:first sg:person.013611426734.26
51 rdf:rest rdf:nil
52 Nbc7d8682e09242b7891a12d47e7dcc54 rdf:first sg:person.012176153337.61
53 rdf:rest Nb0314a267b5b4a549408f4f6166c36e1
54 Nd03c4d9f37fd4bb38c8063ccb93b2796 rdf:first sg:person.010273437531.22
55 rdf:rest Nb51f1eca21a1440fb607b4631b98ee17
56 Nd1a346115abb40cc947e7c30a2422d2e schema:volumeNumber 21
57 rdf:type schema:PublicationVolume
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1295111 schema:issn 1011-8861
65 1226-4865
66 schema:name Journal of Mechanical Science and Technology
67 rdf:type schema:Periodical
68 sg:person.010273437531.22 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
69 schema:familyName Woo
70 schema:givenName Jong Jin
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273437531.22
72 rdf:type schema:Person
73 sg:person.012176153337.61 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
74 schema:familyName Cho
75 schema:givenName Young Man
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61
77 rdf:type schema:Person
78 sg:person.013611426734.26 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
79 schema:familyName Kim
80 schema:givenName Jongwon
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26
82 rdf:type schema:Person
83 sg:person.016513155261.16 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
84 schema:familyName Kim
85 schema:givenName Hwa Soo
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513155261.16
87 rdf:type schema:Person
88 sg:person.07476057131.88 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
89 schema:familyName Kim
90 schema:givenName Ik Kyu
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476057131.88
92 rdf:type schema:Person
93 sg:pub.10.1007/bf02916145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094054
94 https://doi.org/10.1007/bf02916145
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02984393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018219278
97 https://doi.org/10.1007/bf02984393
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/robot.1997.606801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093184714
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tra.2002.1019472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784137
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2514/3.20846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005660191
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2514/6.2000-4291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024424282
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
108 schema:name School of Mechanical and Aerospace Engineering, Seoul National Univ, 151-744, Seoul, Korea
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...