Simulation algorithm of typical modulated Poisson-Voronoi cells and application to telecommunication network modelling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10

AUTHORS

F. Fleischer, C. Gloaguen, H. Schmidt, V. Schmidt, F. Schweiggert

ABSTRACT

We consider modulated Poisson-Voronoi tessellations, intended as models for telecommunication networks on a nationwide scale. By introducing an algorithm for the simulation of the typical cell of the latter tessellation, we lay the mathematical foundation for such a global analysis. A modulated Poisson-Voronoi tessellation has an intensity which is spatially variable and, hence, is able to provide a broad spectrum of model scenarios. Nevertheless, the considered tessellation model is stationary and we consider the case where the modulation is generated by a Boolean germ-grain model with circular grains. These circular grains may either have a deterministic or random but bounded radius. Furthermore, based on the introduced simulation algorithm for the typical cell and on Neveu’s exchange formula for Palm probability measures, we show how to estimate the mean distance from a randomly chosen location to its nearest Voronoi cell nucleus. The latter distance is interpreted as an important basic cost characteristic in telecommunication networks, especially for the computation of more sophisticated functionals later on. Said location is chosen at random among the points of another modulated Poisson process where the modulation is generated by the same Boolean model as for the nuclei. The case of a completely random placement for the considered location is thereby included as a special case. The estimation of the cost functional is performed in a way such that a simulation of the location placement is not necessary. Test methods for the correctness of the algorithm based on tests for random software are briefly discussed. Numerical examples are provided for characteristics of the typical cell as well as for the cost functional. We conclude with some remarks about extensions and modifications of the model regarded in this paper, like modulated Poisson—Delaunay tessellations. More... »

PAGES

305

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03168553

DOI

http://dx.doi.org/10.1007/bf03168553

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002800022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany", 
            "Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 55216, Ingelheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleischer", 
        "givenName": "F.", 
        "id": "sg:person.01331277725.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331277725.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "France Telecom Research and Development, 92794, Issy les Moulineaux Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloaguen", 
        "givenName": "C.", 
        "id": "sg:person.0736175422.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany", 
            "Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 55216, Ingelheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "H.", 
        "id": "sg:person.01141401533.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141401533.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics University Ulm, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "V.", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Applied Information Processing University Ulm, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schweiggert", 
        "givenName": "F.", 
        "id": "sg:person.01033305327.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033305327.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/15326340008807577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003825123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800010806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.simpat.2004.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013065838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019057453", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-80106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019057453", 
          "https://doi.org/10.1007/978-3-322-80106-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-80106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019057453", 
          "https://doi.org/10.1007/978-3-322-80106-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-005-0036-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027939181", 
          "https://doi.org/10.1007/s00186-005-0036-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-005-0036-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027939181", 
          "https://doi.org/10.1007/s00186-005-0036-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019172312328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952616", 
          "https://doi.org/10.1023/a:1019172312328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040166774", 
          "https://doi.org/10.1007/bf03167437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040166774", 
          "https://doi.org/10.1007/bf03167437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001860300326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040764171", 
          "https://doi.org/10.1007/s001860300326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00008802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053393745", 
          "https://doi.org/10.1007/pl00008802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1067436322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.47.4.619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3213616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070227806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-10655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073612786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02995506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085936341", 
          "https://doi.org/10.1007/bf02995506"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "We consider modulated Poisson-Voronoi tessellations, intended as models for telecommunication networks on a nationwide scale. By introducing an algorithm for the simulation of the typical cell of the latter tessellation, we lay the mathematical foundation for such a global analysis. A modulated Poisson-Voronoi tessellation has an intensity which is spatially variable and, hence, is able to provide a broad spectrum of model scenarios. Nevertheless, the considered tessellation model is stationary and we consider the case where the modulation is generated by a Boolean germ-grain model with circular grains. These circular grains may either have a deterministic or random but bounded radius. Furthermore, based on the introduced simulation algorithm for the typical cell and on Neveu\u2019s exchange formula for Palm probability measures, we show how to estimate the mean distance from a randomly chosen location to its nearest Voronoi cell nucleus. The latter distance is interpreted as an important basic cost characteristic in telecommunication networks, especially for the computation of more sophisticated functionals later on. Said location is chosen at random among the points of another modulated Poisson process where the modulation is generated by the same Boolean model as for the nuclei. The case of a completely random placement for the considered location is thereby included as a special case. The estimation of the cost functional is performed in a way such that a simulation of the location placement is not necessary. Test methods for the correctness of the algorithm based on tests for random software are briefly discussed. Numerical examples are provided for characteristics of the typical cell as well as for the cost functional. We conclude with some remarks about extensions and modifications of the model regarded in this paper, like modulated Poisson\u2014Delaunay tessellations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03168553", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Simulation algorithm of typical modulated Poisson-Voronoi cells and application to telecommunication network modelling", 
    "pagination": "305", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d556acd2e4d66bb3a7ad807394d5dacbea0024a9649ce790f3b9e792e858895"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03168553"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002800022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03168553", 
      "https://app.dimensions.ai/details/publication/pub.1002800022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03168553"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03168553'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03168553'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03168553'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03168553'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03168553 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N086bf8690754471fb390301e80fe5c22
4 schema:citation sg:pub.10.1007/978-3-322-80106-7
5 sg:pub.10.1007/bf02995506
6 sg:pub.10.1007/bf03167437
7 sg:pub.10.1007/pl00008802
8 sg:pub.10.1007/s00186-005-0036-2
9 sg:pub.10.1007/s001860300326
10 sg:pub.10.1023/a:1019172312328
11 https://app.dimensions.ai/details/publication/pub.1019057453
12 https://doi.org/10.1016/j.simpat.2004.02.001
13 https://doi.org/10.1017/s0001867800010806
14 https://doi.org/10.1080/15326340008807577
15 https://doi.org/10.1239/aap/1067436322
16 https://doi.org/10.1287/opre.47.4.619
17 https://doi.org/10.2307/3213616
18 https://doi.org/10.7146/math.scand.a-10655
19 schema:datePublished 2008-10
20 schema:datePublishedReg 2008-10-01
21 schema:description We consider modulated Poisson-Voronoi tessellations, intended as models for telecommunication networks on a nationwide scale. By introducing an algorithm for the simulation of the typical cell of the latter tessellation, we lay the mathematical foundation for such a global analysis. A modulated Poisson-Voronoi tessellation has an intensity which is spatially variable and, hence, is able to provide a broad spectrum of model scenarios. Nevertheless, the considered tessellation model is stationary and we consider the case where the modulation is generated by a Boolean germ-grain model with circular grains. These circular grains may either have a deterministic or random but bounded radius. Furthermore, based on the introduced simulation algorithm for the typical cell and on Neveu’s exchange formula for Palm probability measures, we show how to estimate the mean distance from a randomly chosen location to its nearest Voronoi cell nucleus. The latter distance is interpreted as an important basic cost characteristic in telecommunication networks, especially for the computation of more sophisticated functionals later on. Said location is chosen at random among the points of another modulated Poisson process where the modulation is generated by the same Boolean model as for the nuclei. The case of a completely random placement for the considered location is thereby included as a special case. The estimation of the cost functional is performed in a way such that a simulation of the location placement is not necessary. Test methods for the correctness of the algorithm based on tests for random software are briefly discussed. Numerical examples are provided for characteristics of the typical cell as well as for the cost functional. We conclude with some remarks about extensions and modifications of the model regarded in this paper, like modulated Poisson—Delaunay tessellations.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N5a2645244752471c98dc7c5b1d7f764b
26 N729e45109cc34b1da2587aa8096e49fd
27 sg:journal.1041814
28 schema:name Simulation algorithm of typical modulated Poisson-Voronoi cells and application to telecommunication network modelling
29 schema:pagination 305
30 schema:productId N2655e4e544db49cc8ce1c5c69170f18b
31 N2733330fdefb4b34867460e4d9a6af7a
32 N780ac491bf864f9083a3caa6451a25b3
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002800022
34 https://doi.org/10.1007/bf03168553
35 schema:sdDatePublished 2019-04-11T09:30
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N91587a17f08c4a43a53b4aaf7659ce21
38 schema:url http://link.springer.com/10.1007%2FBF03168553
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N086bf8690754471fb390301e80fe5c22 rdf:first sg:person.01331277725.99
43 rdf:rest N371d3aef077f41b197693cde236ee50d
44 N2655e4e544db49cc8ce1c5c69170f18b schema:name readcube_id
45 schema:value 0d556acd2e4d66bb3a7ad807394d5dacbea0024a9649ce790f3b9e792e858895
46 rdf:type schema:PropertyValue
47 N2733330fdefb4b34867460e4d9a6af7a schema:name dimensions_id
48 schema:value pub.1002800022
49 rdf:type schema:PropertyValue
50 N371d3aef077f41b197693cde236ee50d rdf:first sg:person.0736175422.90
51 rdf:rest N5edf01177c6c4142a1fb847a8cd45e29
52 N5a2645244752471c98dc7c5b1d7f764b schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 N5edf01177c6c4142a1fb847a8cd45e29 rdf:first sg:person.01141401533.74
55 rdf:rest N971d5905c2004e4781dc91d8bec36d28
56 N729e45109cc34b1da2587aa8096e49fd schema:volumeNumber 25
57 rdf:type schema:PublicationVolume
58 N780ac491bf864f9083a3caa6451a25b3 schema:name doi
59 schema:value 10.1007/bf03168553
60 rdf:type schema:PropertyValue
61 N91587a17f08c4a43a53b4aaf7659ce21 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N91c68842087d4c218ee9cd7f8fc86f0c rdf:first sg:person.01033305327.77
64 rdf:rest rdf:nil
65 N92efeafe47db413bb583157533a242d9 schema:name Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 55216, Ingelheim, Germany
66 Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
67 rdf:type schema:Organization
68 N971d5905c2004e4781dc91d8bec36d28 rdf:first sg:person.01051347101.48
69 rdf:rest N91c68842087d4c218ee9cd7f8fc86f0c
70 Nd7cc97042ffb4af7a65f35578eac1364 schema:name Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 55216, Ingelheim, Germany
71 Medical Data Services, Biostatistics Boehnnger Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
72 rdf:type schema:Organization
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:journal.1041814 schema:issn 0916-7005
80 1868-937X
81 schema:name Japan Journal of Industrial and Applied Mathematics
82 rdf:type schema:Periodical
83 sg:person.01033305327.77 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
84 schema:familyName Schweiggert
85 schema:givenName F.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033305327.77
87 rdf:type schema:Person
88 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
89 schema:familyName Schmidt
90 schema:givenName V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
92 rdf:type schema:Person
93 sg:person.01141401533.74 schema:affiliation Nd7cc97042ffb4af7a65f35578eac1364
94 schema:familyName Schmidt
95 schema:givenName H.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141401533.74
97 rdf:type schema:Person
98 sg:person.01331277725.99 schema:affiliation N92efeafe47db413bb583157533a242d9
99 schema:familyName Fleischer
100 schema:givenName F.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331277725.99
102 rdf:type schema:Person
103 sg:person.0736175422.90 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
104 schema:familyName Gloaguen
105 schema:givenName C.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90
107 rdf:type schema:Person
108 sg:pub.10.1007/978-3-322-80106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019057453
109 https://doi.org/10.1007/978-3-322-80106-7
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02995506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085936341
112 https://doi.org/10.1007/bf02995506
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf03167437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040166774
115 https://doi.org/10.1007/bf03167437
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/pl00008802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053393745
118 https://doi.org/10.1007/pl00008802
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00186-005-0036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027939181
121 https://doi.org/10.1007/s00186-005-0036-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s001860300326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040764171
124 https://doi.org/10.1007/s001860300326
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1019172312328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952616
127 https://doi.org/10.1023/a:1019172312328
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1019057453 schema:CreativeWork
130 https://doi.org/10.1016/j.simpat.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013065838
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/s0001867800010806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776595
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/15326340008807577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825123
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1239/aap/1067436322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440562
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1287/opre.47.4.619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731167
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/3213616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070227806
141 rdf:type schema:CreativeWork
142 https://doi.org/10.7146/math.scand.a-10655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073612786
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
145 schema:name Institute of Applied Information Processing University Ulm, 89069, Ulm, Germany
146 Institute of Stochastics University Ulm, 89069, Ulm, Germany
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
149 schema:name France Telecom Research and Development, 92794, Issy les Moulineaux Cedex 9, France
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...