Approximations of functionals of some modulated-Poisson Voronoi tessellations with applications to modeling of communication networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-06

AUTHORS

Bartlomiej Błaszczyszyn, René Schott

ABSTRACT

We consider the Voronoi tessellation of Euclidian plane that is generated by an inhomogeneous Poisson point process whose intensity takes different constant values on sets of some finite partition of the plane. We show that mean functionals of a cell with the nucleus located in a given set of the partition can be approximated by the mean functionals of the typical cell of the homogeneous Poisson Voronoi tessellation with intensity appropriate to this partitioning set. We give bounds for the approximation errors, which depend on the distance of the nucleus to the boundary of the element of the partition it belongs to. In the case of a stationary random partition, we show that mean functionals of the typical cell of the respective double-stochastic Poisson-Voronoi tessellation admit an approximate decomposition formula. The true value is approximated by a mixture of respective mean functionals for homogeneous models, while the explicit upper bound for the remaining term, which depends on the covariance functions of the random partitioning elements, can be computed numerically for a large class of practical examples. This paper complements the previous studies in [9], where the distribution of the typical cell is approximated. One of the motivations for the study in question is modeling of modern communication networks, where application of the Poisson Voronoi tessellation has already proven to give some interesting results and where the assumption of the homogeneity is often non-adequate. More... »

PAGES

179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03167437

DOI

http://dx.doi.org/10.1007/bf03167437

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040166774


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "ENS/INRIA and Mathematical Institute University of Wroclaw, 45 rue d\u2019Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u0142aszczyszyn", 
        "givenName": "Bartlomiej", 
        "id": "sg:person.013154315266.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154315266.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LORIA and IECN, Universit\u00e9 Henri Poincar\u00e9-Nancy 1, BP 239, 54506, Vandoeuvre-l\u00e8s-Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schott", 
        "givenName": "Ren\u00e9", 
        "id": "sg:person.014523273043.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523273043.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1020321501945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006459911", 
          "https://doi.org/10.1023/a:1020321501945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800010806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19800970109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016480576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2004.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023981218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019172312328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952616", 
          "https://doi.org/10.1023/a:1019172312328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1067436322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02995506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085936341", 
          "https://doi.org/10.1007/bf02995506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.1999.751663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094309830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470317013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496296", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "We consider the Voronoi tessellation of Euclidian plane that is generated by an inhomogeneous Poisson point process whose intensity takes different constant values on sets of some finite partition of the plane. We show that mean functionals of a cell with the nucleus located in a given set of the partition can be approximated by the mean functionals of the typical cell of the homogeneous Poisson Voronoi tessellation with intensity appropriate to this partitioning set. We give bounds for the approximation errors, which depend on the distance of the nucleus to the boundary of the element of the partition it belongs to. In the case of a stationary random partition, we show that mean functionals of the typical cell of the respective double-stochastic Poisson-Voronoi tessellation admit an approximate decomposition formula. The true value is approximated by a mixture of respective mean functionals for homogeneous models, while the explicit upper bound for the remaining term, which depends on the covariance functions of the random partitioning elements, can be computed numerically for a large class of practical examples. This paper complements the previous studies in [9], where the distribution of the typical cell is approximated. One of the motivations for the study in question is modeling of modern communication networks, where application of the Poisson Voronoi tessellation has already proven to give some interesting results and where the assumption of the homogeneity is often non-adequate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03167437", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Approximations of functionals of some modulated-Poisson Voronoi tessellations with applications to modeling of communication networks", 
    "pagination": "179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf570fe44108f5006ad8402da612ec9b1b7683202705309150e4595c3326059a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03167437"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040166774"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03167437", 
      "https://app.dimensions.ai/details/publication/pub.1040166774"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03167437"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03167437'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03167437'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03167437'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03167437'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03167437 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N40ee23d347c94affba5c013215a85a20
4 schema:citation sg:pub.10.1007/bf02995506
5 sg:pub.10.1023/a:1019172312328
6 sg:pub.10.1023/a:1020321501945
7 https://app.dimensions.ai/details/publication/pub.1109496296
8 https://doi.org/10.1002/9780470317013
9 https://doi.org/10.1002/mana.19800970109
10 https://doi.org/10.1016/j.peva.2004.03.005
11 https://doi.org/10.1017/s0001867800010806
12 https://doi.org/10.1109/infcom.1999.751663
13 https://doi.org/10.1239/aap/1067436322
14 schema:datePublished 2005-06
15 schema:datePublishedReg 2005-06-01
16 schema:description We consider the Voronoi tessellation of Euclidian plane that is generated by an inhomogeneous Poisson point process whose intensity takes different constant values on sets of some finite partition of the plane. We show that mean functionals of a cell with the nucleus located in a given set of the partition can be approximated by the mean functionals of the typical cell of the homogeneous Poisson Voronoi tessellation with intensity appropriate to this partitioning set. We give bounds for the approximation errors, which depend on the distance of the nucleus to the boundary of the element of the partition it belongs to. In the case of a stationary random partition, we show that mean functionals of the typical cell of the respective double-stochastic Poisson-Voronoi tessellation admit an approximate decomposition formula. The true value is approximated by a mixture of respective mean functionals for homogeneous models, while the explicit upper bound for the remaining term, which depends on the covariance functions of the random partitioning elements, can be computed numerically for a large class of practical examples. This paper complements the previous studies in [9], where the distribution of the typical cell is approximated. One of the motivations for the study in question is modeling of modern communication networks, where application of the Poisson Voronoi tessellation has already proven to give some interesting results and where the assumption of the homogeneity is often non-adequate.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N09ef03bec25e4a94b2954506b727c778
21 N5e25d05d371a40cd87c13369cb71b43c
22 sg:journal.1041814
23 schema:name Approximations of functionals of some modulated-Poisson Voronoi tessellations with applications to modeling of communication networks
24 schema:pagination 179
25 schema:productId N74f6bc1d90cc46c4a9d21afd7d26e094
26 N9f7d748163644863889275f7608af3ee
27 Ncb99a4d050694941a976bcc65951739c
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040166774
29 https://doi.org/10.1007/bf03167437
30 schema:sdDatePublished 2019-04-11T09:31
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N38682a29b2b8469fbbaf26d76ad572bb
33 schema:url http://link.springer.com/10.1007%2FBF03167437
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N09ef03bec25e4a94b2954506b727c778 schema:volumeNumber 22
38 rdf:type schema:PublicationVolume
39 N2e11c2f51d4a45f9a5ef7f7101f23d90 schema:name LORIA and IECN, Université Henri Poincaré-Nancy 1, BP 239, 54506, Vandoeuvre-lès-Nancy, France
40 rdf:type schema:Organization
41 N38682a29b2b8469fbbaf26d76ad572bb schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N40ee23d347c94affba5c013215a85a20 rdf:first sg:person.013154315266.38
44 rdf:rest Nc17762e64772468d8f9bd9e489ab7626
45 N5e25d05d371a40cd87c13369cb71b43c schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N74f6bc1d90cc46c4a9d21afd7d26e094 schema:name dimensions_id
48 schema:value pub.1040166774
49 rdf:type schema:PropertyValue
50 N9f7d748163644863889275f7608af3ee schema:name readcube_id
51 schema:value bf570fe44108f5006ad8402da612ec9b1b7683202705309150e4595c3326059a
52 rdf:type schema:PropertyValue
53 Nc17762e64772468d8f9bd9e489ab7626 rdf:first sg:person.014523273043.03
54 rdf:rest rdf:nil
55 Ncb99a4d050694941a976bcc65951739c schema:name doi
56 schema:value 10.1007/bf03167437
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
62 schema:name Statistics
63 rdf:type schema:DefinedTerm
64 sg:journal.1041814 schema:issn 0916-7005
65 1868-937X
66 schema:name Japan Journal of Industrial and Applied Mathematics
67 rdf:type schema:Periodical
68 sg:person.013154315266.38 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
69 schema:familyName Błaszczyszyn
70 schema:givenName Bartlomiej
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154315266.38
72 rdf:type schema:Person
73 sg:person.014523273043.03 schema:affiliation N2e11c2f51d4a45f9a5ef7f7101f23d90
74 schema:familyName Schott
75 schema:givenName René
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523273043.03
77 rdf:type schema:Person
78 sg:pub.10.1007/bf02995506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085936341
79 https://doi.org/10.1007/bf02995506
80 rdf:type schema:CreativeWork
81 sg:pub.10.1023/a:1019172312328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952616
82 https://doi.org/10.1023/a:1019172312328
83 rdf:type schema:CreativeWork
84 sg:pub.10.1023/a:1020321501945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006459911
85 https://doi.org/10.1023/a:1020321501945
86 rdf:type schema:CreativeWork
87 https://app.dimensions.ai/details/publication/pub.1109496296 schema:CreativeWork
88 https://doi.org/10.1002/9780470317013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496296
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/mana.19800970109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016480576
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.peva.2004.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023981218
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0001867800010806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776595
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/infcom.1999.751663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094309830
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1239/aap/1067436322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440562
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
101 schema:name ENS/INRIA and Mathematical Institute University of Wroclaw, 45 rue d’Ulm, 75005, Paris, France
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...