Error bounds for a fictitious domain method with Lagrange multiplier treatment on the boundary for a Dirichlet problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02

AUTHORS

Tsorng-Whay Pan

ABSTRACT

In this article we obtain discrete inf-sup conditions and error bounds for a fictitious domain with Lagrange multiplier treatment for the boundary condition on the curved boundary to an elliptic Dirichlet problem with conforming finite elements of degree one on a uniform mesh.

PAGES

75

References to SciGraph publications

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03167397

DOI

http://dx.doi.org/10.1007/bf03167397

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031388291


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematic, University of Houston, TX 77204, Houston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Tsorng-Whay", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03167240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009581964", 
          "https://doi.org/10.1007/bf03167240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009581964", 
          "https://doi.org/10.1007/bf03167240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90135-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017170756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023597288", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61623-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597288", 
          "https://doi.org/10.1007/978-3-642-61623-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61623-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597288", 
          "https://doi.org/10.1007/978-3-642-61623-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3172-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029637532", 
          "https://doi.org/10.1007/978-1-4612-3172-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3172-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029637532", 
          "https://doi.org/10.1007/978-1-4612-3172-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0708066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2006259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069693541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/197509r200771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083713192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/1977110403411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083713227"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-02", 
    "datePublishedReg": "1998-02-01", 
    "description": "In this article we obtain discrete inf-sup conditions and error bounds for a fictitious domain with Lagrange multiplier treatment for the boundary condition on the curved boundary to an elliptic Dirichlet problem with conforming finite elements of degree one on a uniform mesh.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03167397", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Error bounds for a fictitious domain method with Lagrange multiplier treatment on the boundary for a Dirichlet problem", 
    "pagination": "75", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95871baa75483b4c985d09f3d03efd2bea752afc9aa3cdbc913e1f57533fa490"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03167397"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031388291"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03167397", 
      "https://app.dimensions.ai/details/publication/pub.1031388291"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03167397"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03167397'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03167397'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03167397'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03167397'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03167397 schema:author N3c35124ed6994873a68ac34778217749
2 schema:citation sg:pub.10.1007/978-1-4612-3172-1
3 sg:pub.10.1007/978-3-642-61623-5
4 sg:pub.10.1007/bf03167240
5 https://app.dimensions.ai/details/publication/pub.1023597288
6 https://doi.org/10.1016/0045-7825(94)90022-1
7 https://doi.org/10.1016/0045-7825(94)90135-x
8 https://doi.org/10.1051/m2an/197509r200771
9 https://doi.org/10.1051/m2an/1977110403411
10 https://doi.org/10.1137/0708066
11 https://doi.org/10.2307/2006259
12 schema:datePublished 1998-02
13 schema:datePublishedReg 1998-02-01
14 schema:description In this article we obtain discrete inf-sup conditions and error bounds for a fictitious domain with Lagrange multiplier treatment for the boundary condition on the curved boundary to an elliptic Dirichlet problem with conforming finite elements of degree one on a uniform mesh.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N456efb9a976e4566b3a39be4623a2668
19 N59462cad38fa4b3db02325617a306fd9
20 sg:journal.1041814
21 schema:name Error bounds for a fictitious domain method with Lagrange multiplier treatment on the boundary for a Dirichlet problem
22 schema:pagination 75
23 schema:productId N389b28d573b84685a6ef43b130e093e4
24 N5660821046474583abc8b28041f02cb4
25 Ne290b087e7ab443c9d7c27eadfe281fa
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031388291
27 https://doi.org/10.1007/bf03167397
28 schema:sdDatePublished 2019-04-11T09:31
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9d87f8bea1ae44f387e7595ed171d9f1
31 schema:url http://link.springer.com/10.1007%2FBF03167397
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N389b28d573b84685a6ef43b130e093e4 schema:name dimensions_id
36 schema:value pub.1031388291
37 rdf:type schema:PropertyValue
38 N3c35124ed6994873a68ac34778217749 rdf:first sg:person.013505452521.86
39 rdf:rest rdf:nil
40 N456efb9a976e4566b3a39be4623a2668 schema:volumeNumber 15
41 rdf:type schema:PublicationVolume
42 N5660821046474583abc8b28041f02cb4 schema:name readcube_id
43 schema:value 95871baa75483b4c985d09f3d03efd2bea752afc9aa3cdbc913e1f57533fa490
44 rdf:type schema:PropertyValue
45 N59462cad38fa4b3db02325617a306fd9 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N9d87f8bea1ae44f387e7595ed171d9f1 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ne290b087e7ab443c9d7c27eadfe281fa schema:name doi
50 schema:value 10.1007/bf03167397
51 rdf:type schema:PropertyValue
52 sg:journal.1041814 schema:issn 0916-7005
53 1868-937X
54 schema:name Japan Journal of Industrial and Applied Mathematics
55 rdf:type schema:Periodical
56 sg:person.013505452521.86 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
57 schema:familyName Pan
58 schema:givenName Tsorng-Whay
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
60 rdf:type schema:Person
61 sg:pub.10.1007/978-1-4612-3172-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029637532
62 https://doi.org/10.1007/978-1-4612-3172-1
63 rdf:type schema:CreativeWork
64 sg:pub.10.1007/978-3-642-61623-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597288
65 https://doi.org/10.1007/978-3-642-61623-5
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/bf03167240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581964
68 https://doi.org/10.1007/bf03167240
69 rdf:type schema:CreativeWork
70 https://app.dimensions.ai/details/publication/pub.1023597288 schema:CreativeWork
71 https://doi.org/10.1016/0045-7825(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054549065
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0045-7825(94)90135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017170756
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1051/m2an/197509r200771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083713192
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1051/m2an/1977110403411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083713227
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1137/0708066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851998
80 rdf:type schema:CreativeWork
81 https://doi.org/10.2307/2006259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069693541
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
84 schema:name Department of Mathematic, University of Houston, TX 77204, Houston, USA
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...