A Lagrange multiplier/fictitious domain method for the Dirichlet problem — Generalization to some flow problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-02

AUTHORS

Roland Glowinski, Tsorng-Whay Pan, Jacques Periaux

ABSTRACT

In this article we discuss the solution of the Dirichlet problem for a class of elliptic operators by a Lagrange multiplier/fictitious domain method. This approach allows the use of regular grids and therefore of fast specialized solvers for problems on complicated geometries; the resulting saddle-point system can be solved by an Uzawa/conjugate gradient algorithm. The resulting methodology is applied to the solution of some flow problems, including external incompressible viscous flow modelled by Navier-Stokes equations. More... »

PAGES

87

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03167383

DOI

http://dx.doi.org/10.1007/bf03167383

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046669437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre Europeen De Recherche Et De Formation Avancee En Calcul Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.15040.30", 
          "name": [
            "Department of Mathematics, University of Houston, 77204, Houston, TX, USA", 
            "Universit\u00e9 P. et M. Curie, Paris", 
            "CERFACS, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glowinski", 
        "givenName": "Roland", 
        "id": "sg:person.01167212034.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Tsorng-Whay", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dassault Aviation (France)", 
          "id": "https://www.grid.ac/institutes/grid.18840.35", 
          "name": [
            "Dassault Aviation, 92214, Saint-Cloud, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Periaux", 
        "givenName": "Jacques", 
        "id": "sg:person.013072610641.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072610641.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01191614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001450866", 
          "https://doi.org/10.1007/bf01191614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01191614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001450866", 
          "https://doi.org/10.1007/bf01191614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(91)90291-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007223251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90135-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017170756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-10326-5_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018586444", 
          "https://doi.org/10.1007/978-3-662-10326-5_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032372222", 
          "https://doi.org/10.1007/bf01386422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5162-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033599883", 
          "https://doi.org/10.1007/978-1-4612-5162-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5162-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033599883", 
          "https://doi.org/10.1007/978-1-4612-5162-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7977(87)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034567318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0103003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0708066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-02", 
    "datePublishedReg": "1995-02-01", 
    "description": "In this article we discuss the solution of the Dirichlet problem for a class of elliptic operators by a Lagrange multiplier/fictitious domain method. This approach allows the use of regular grids and therefore of fast specialized solvers for problems on complicated geometries; the resulting saddle-point system can be solved by an Uzawa/conjugate gradient algorithm. The resulting methodology is applied to the solution of some flow problems, including external incompressible viscous flow modelled by Navier-Stokes equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03167383", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "A Lagrange multiplier/fictitious domain method for the Dirichlet problem \u2014 Generalization to some flow problems", 
    "pagination": "87", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de509035d90f251cc5a265056e8592eb8ce9301ce8608a256f442c2d5f383893"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03167383"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046669437"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03167383", 
      "https://app.dimensions.ai/details/publication/pub.1046669437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99833_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03167383"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03167383'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03167383'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03167383'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03167383'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03167383 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0b6e7dab83334253afeac91c1b57cc8b
4 schema:citation sg:pub.10.1007/978-1-4612-5162-0_10
5 sg:pub.10.1007/978-3-662-10326-5_41
6 sg:pub.10.1007/978-3-662-12613-4
7 sg:pub.10.1007/bf01191614
8 sg:pub.10.1007/bf01386422
9 https://doi.org/10.1016/0021-9991(91)90291-r
10 https://doi.org/10.1016/0045-7825(94)90022-1
11 https://doi.org/10.1016/0045-7825(94)90135-x
12 https://doi.org/10.1016/0167-7977(87)90011-6
13 https://doi.org/10.1137/0103003
14 https://doi.org/10.1137/0708066
15 schema:datePublished 1995-02
16 schema:datePublishedReg 1995-02-01
17 schema:description In this article we discuss the solution of the Dirichlet problem for a class of elliptic operators by a Lagrange multiplier/fictitious domain method. This approach allows the use of regular grids and therefore of fast specialized solvers for problems on complicated geometries; the resulting saddle-point system can be solved by an Uzawa/conjugate gradient algorithm. The resulting methodology is applied to the solution of some flow problems, including external incompressible viscous flow modelled by Navier-Stokes equations.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N172bd42b6c4d4509a01670399331c85c
22 N54f431510ef34f1f8d67784a4a2b997c
23 sg:journal.1041814
24 schema:name A Lagrange multiplier/fictitious domain method for the Dirichlet problem — Generalization to some flow problems
25 schema:pagination 87
26 schema:productId N9e1ffa3c23a541f2ab48145c5dacca87
27 Nb279197581424ba88cb74b65dd481584
28 Nd86f274e8eac4e00a4bcddfa126671af
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046669437
30 https://doi.org/10.1007/bf03167383
31 schema:sdDatePublished 2019-04-11T09:39
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Na60e36cf5fac41e0ac470373fd27dbbf
34 schema:url http://link.springer.com/10.1007%2FBF03167383
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0b6e7dab83334253afeac91c1b57cc8b rdf:first sg:person.01167212034.31
39 rdf:rest Ne43eaad7f436423494070412bf48d252
40 N172bd42b6c4d4509a01670399331c85c schema:issueNumber 1
41 rdf:type schema:PublicationIssue
42 N3b031016cbfd4328a1666edcaddf7dfa rdf:first sg:person.013072610641.48
43 rdf:rest rdf:nil
44 N54f431510ef34f1f8d67784a4a2b997c schema:volumeNumber 12
45 rdf:type schema:PublicationVolume
46 N9e1ffa3c23a541f2ab48145c5dacca87 schema:name doi
47 schema:value 10.1007/bf03167383
48 rdf:type schema:PropertyValue
49 Na60e36cf5fac41e0ac470373fd27dbbf schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nb279197581424ba88cb74b65dd481584 schema:name dimensions_id
52 schema:value pub.1046669437
53 rdf:type schema:PropertyValue
54 Nd86f274e8eac4e00a4bcddfa126671af schema:name readcube_id
55 schema:value de509035d90f251cc5a265056e8592eb8ce9301ce8608a256f442c2d5f383893
56 rdf:type schema:PropertyValue
57 Ne43eaad7f436423494070412bf48d252 rdf:first sg:person.013505452521.86
58 rdf:rest N3b031016cbfd4328a1666edcaddf7dfa
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
63 schema:name Numerical and Computational Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1041814 schema:issn 0916-7005
66 1868-937X
67 schema:name Japan Journal of Industrial and Applied Mathematics
68 rdf:type schema:Periodical
69 sg:person.01167212034.31 schema:affiliation https://www.grid.ac/institutes/grid.15040.30
70 schema:familyName Glowinski
71 schema:givenName Roland
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31
73 rdf:type schema:Person
74 sg:person.013072610641.48 schema:affiliation https://www.grid.ac/institutes/grid.18840.35
75 schema:familyName Periaux
76 schema:givenName Jacques
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072610641.48
78 rdf:type schema:Person
79 sg:person.013505452521.86 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
80 schema:familyName Pan
81 schema:givenName Tsorng-Whay
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4612-5162-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033599883
85 https://doi.org/10.1007/978-1-4612-5162-0_10
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-662-10326-5_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018586444
88 https://doi.org/10.1007/978-3-662-10326-5_41
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-662-12613-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049770519
91 https://doi.org/10.1007/978-3-662-12613-4
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01191614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001450866
94 https://doi.org/10.1007/bf01191614
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01386422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032372222
97 https://doi.org/10.1007/bf01386422
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0021-9991(91)90291-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1007223251
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0045-7825(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054549065
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0045-7825(94)90135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017170756
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0167-7977(87)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034567318
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1137/0103003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837572
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1137/0708066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851998
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.15040.30 schema:alternateName Centre Europeen De Recherche Et De Formation Avancee En Calcul Scientifique
112 schema:name CERFACS, Toulouse, France
113 Department of Mathematics, University of Houston, 77204, Houston, TX, USA
114 Université P. et M. Curie, Paris
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.18840.35 schema:alternateName Dassault Aviation (France)
117 schema:name Dassault Aviation, 92214, Saint-Cloud, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
120 schema:name Department of Mathematics, University of Houston, 77204, Houston, TX, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...