Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

Hee-Joung Kim, Joel S. Karp, P. David Mozley, Seoung-Oh Yang, Dae Hyuk Moon, Hank F. Kung, Hee Kyung Lee, Abass Alavi

ABSTRACT

The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data. More... »

PAGES

153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03165071

DOI

http://dx.doi.org/10.1007/bf03165071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012261407

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8814722


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea", 
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hee-Joung", 
        "id": "sg:person.0741446276.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741446276.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karp", 
        "givenName": "Joel S.", 
        "id": "sg:person.010611461772.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611461772.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozley", 
        "givenName": "P. David", 
        "id": "sg:person.0601735146.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Seoung-Oh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Dae Hyuk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Hank F.", 
        "id": "sg:person.0615735606.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hee Kyung", 
        "id": "sg:person.01061646054.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061646054.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.595352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006006961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.595623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020471448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.594457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051290633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/30/2/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/37/8/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.106686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061127880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.141641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.1978.4329385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061724779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.1985.4336941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061730389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076202890", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076424971", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077689338", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078031612", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079646356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079779530", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079780154", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081684139", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082823950", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03165071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging", 
    "pagination": "153", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a6af09d30e4c28e2eda5411d13387645a2430dda6f3180accd91222e036e82f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8814722"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03165071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012261407"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03165071", 
      "https://app.dimensions.ai/details/publication/pub.1012261407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99809_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03165071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      57 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03165071 schema:about N37d6acaad5a841739f38d463e39b3c18
2 N446096b12ed5400b977a589baae415b8
3 N5509c735694e4ba39a34b788f56a6280
4 N62dd12032c74449ab1f1b087e8982990
5 N83463fde5aea45b9b489b62efccb57d5
6 N922bc84781a64355b40ca638c9bba557
7 N93b49fe64fb045c59840e6932e2e1580
8 N9a7721e9ce8d4371b7768194bc2cea34
9 Na3c619fae67f408fb606b1fa67708034
10 Nb381f09839dc4f5bac7639b28b21b1e8
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author Nadb2d4f0906f47d0a51bded2161bf7e1
14 schema:citation https://app.dimensions.ai/details/publication/pub.1076202890
15 https://app.dimensions.ai/details/publication/pub.1076424971
16 https://app.dimensions.ai/details/publication/pub.1077689338
17 https://app.dimensions.ai/details/publication/pub.1078031612
18 https://app.dimensions.ai/details/publication/pub.1079646356
19 https://app.dimensions.ai/details/publication/pub.1079779530
20 https://app.dimensions.ai/details/publication/pub.1079780154
21 https://app.dimensions.ai/details/publication/pub.1081684139
22 https://app.dimensions.ai/details/publication/pub.1082823950
23 https://doi.org/10.1088/0031-9155/30/2/005
24 https://doi.org/10.1088/0031-9155/37/8/001
25 https://doi.org/10.1109/23.106686
26 https://doi.org/10.1109/42.141641
27 https://doi.org/10.1109/tns.1978.4329385
28 https://doi.org/10.1109/tns.1985.4336941
29 https://doi.org/10.1118/1.594457
30 https://doi.org/10.1118/1.595352
31 https://doi.org/10.1118/1.595623
32 schema:datePublished 1996-03
33 schema:datePublishedReg 1996-03-01
34 schema:description The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N4119d8c23c52452ab00a991af59069a2
39 N8cd63c23c5fe4b24b673a24abf38ff66
40 sg:journal.1099601
41 schema:name Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging
42 schema:pagination 153
43 schema:productId N1efe29e4acd44df9925838027d7c8873
44 N3b51c81146f547648cd97124250ae33f
45 Nbe8ac8161eb048c8a6951e12979979e5
46 Nc00253eba58c4d2f8c49a3ec003d7b1e
47 Nfb3424e181c148bb8810ae5a67e99c83
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012261407
49 https://doi.org/10.1007/bf03165071
50 schema:sdDatePublished 2019-04-11T09:32
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N76ade8a50d774be685875763ff4fffbd
53 schema:url http://link.springer.com/10.1007%2FBF03165071
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N043e82f1a83f40c0a07127a59375be35 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
58 rdf:type schema:Organization
59 N0549d192c46f405286f13f0584b12ab5 schema:affiliation N0d6b1f370857427bbf1f6c189a62999b
60 schema:familyName Moon
61 schema:givenName Dae Hyuk
62 rdf:type schema:Person
63 N0d6b1f370857427bbf1f6c189a62999b schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
64 rdf:type schema:Organization
65 N1390125816194e1d97f55e10a17a3935 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
66 rdf:type schema:Organization
67 N1efe29e4acd44df9925838027d7c8873 schema:name readcube_id
68 schema:value 3a6af09d30e4c28e2eda5411d13387645a2430dda6f3180accd91222e036e82f
69 rdf:type schema:PropertyValue
70 N322c00ad41d34aae9f61ae8d66c4eca9 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
71 rdf:type schema:Organization
72 N37d6acaad5a841739f38d463e39b3c18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Technetium
74 rdf:type schema:DefinedTerm
75 N3b51c81146f547648cd97124250ae33f schema:name nlm_unique_id
76 schema:value 8913398
77 rdf:type schema:PropertyValue
78 N3e2a0fd6ef9c4ada8805ee793c7415dc schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
79 rdf:type schema:Organization
80 N4119d8c23c52452ab00a991af59069a2 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N446096b12ed5400b977a589baae415b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Image Processing, Computer-Assisted
84 rdf:type schema:DefinedTerm
85 N4640489ff9ee43e6a5db232ae339bd58 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
86 rdf:type schema:Organization
87 N476395c94dc54cf388b0306b5bf3c263 schema:affiliation N043e82f1a83f40c0a07127a59375be35
88 schema:familyName Yang
89 schema:givenName Seoung-Oh
90 rdf:type schema:Person
91 N5509c735694e4ba39a34b788f56a6280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Data Interpretation, Statistical
93 rdf:type schema:DefinedTerm
94 N62dd12032c74449ab1f1b087e8982990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Humans
96 rdf:type schema:DefinedTerm
97 N76ade8a50d774be685875763ff4fffbd schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N7c777c9bef6a4a0985882a4d5af8cf79 rdf:first N0549d192c46f405286f13f0584b12ab5
100 rdf:rest Nc3c7ae3a66824913bc8ee75dd88baf01
101 N83463fde5aea45b9b489b62efccb57d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Magnetic Resonance Imaging
103 rdf:type schema:DefinedTerm
104 N8cd63c23c5fe4b24b673a24abf38ff66 schema:volumeNumber 10
105 rdf:type schema:PublicationVolume
106 N922bc84781a64355b40ca638c9bba557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Brain
108 rdf:type schema:DefinedTerm
109 N93b49fe64fb045c59840e6932e2e1580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Phantoms, Imaging
111 rdf:type schema:DefinedTerm
112 N9a7721e9ce8d4371b7768194bc2cea34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Computer Simulation
114 rdf:type schema:DefinedTerm
115 Na3c619fae67f408fb606b1fa67708034 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Tomography, Emission-Computed, Single-Photon
117 rdf:type schema:DefinedTerm
118 Nadb2d4f0906f47d0a51bded2161bf7e1 rdf:first sg:person.0741446276.03
119 rdf:rest Nba0525b716c14a87959871d2c31e2cac
120 Nb1a87139d73b4c11b01f829239650962 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
121 Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
122 rdf:type schema:Organization
123 Nb381f09839dc4f5bac7639b28b21b1e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Evaluation Studies as Topic
125 rdf:type schema:DefinedTerm
126 Nba0525b716c14a87959871d2c31e2cac rdf:first sg:person.010611461772.35
127 rdf:rest Ne81eca6553244c749de23b4ad2e57508
128 Nbe8ac8161eb048c8a6951e12979979e5 schema:name doi
129 schema:value 10.1007/bf03165071
130 rdf:type schema:PropertyValue
131 Nc00253eba58c4d2f8c49a3ec003d7b1e schema:name dimensions_id
132 schema:value pub.1012261407
133 rdf:type schema:PropertyValue
134 Nc3c7ae3a66824913bc8ee75dd88baf01 rdf:first sg:person.0615735606.55
135 rdf:rest Ne2b5e78baba94b6188461b8b6cc2b3d7
136 Ndbbb2638a69340c9a3843ecec9a867c1 rdf:first N476395c94dc54cf388b0306b5bf3c263
137 rdf:rest N7c777c9bef6a4a0985882a4d5af8cf79
138 Nddd428681a224687b9e352becb46d373 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
139 rdf:type schema:Organization
140 Ne2b5e78baba94b6188461b8b6cc2b3d7 rdf:first sg:person.01061646054.58
141 rdf:rest Nea7a6a16940a48d0adfd9bb4c5a88d97
142 Ne81eca6553244c749de23b4ad2e57508 rdf:first sg:person.0601735146.81
143 rdf:rest Ndbbb2638a69340c9a3843ecec9a867c1
144 Nea7a6a16940a48d0adfd9bb4c5a88d97 rdf:first sg:person.013064447257.07
145 rdf:rest rdf:nil
146 Nfb3424e181c148bb8810ae5a67e99c83 schema:name pubmed_id
147 schema:value 8814722
148 rdf:type schema:PropertyValue
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
153 schema:name Neurosciences
154 rdf:type schema:DefinedTerm
155 sg:journal.1099601 schema:issn 0914-7187
156 1864-6433
157 schema:name Annals of Nuclear Medicine
158 rdf:type schema:Periodical
159 sg:person.010611461772.35 schema:affiliation N4640489ff9ee43e6a5db232ae339bd58
160 schema:familyName Karp
161 schema:givenName Joel S.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611461772.35
163 rdf:type schema:Person
164 sg:person.01061646054.58 schema:affiliation N322c00ad41d34aae9f61ae8d66c4eca9
165 schema:familyName Lee
166 schema:givenName Hee Kyung
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061646054.58
168 rdf:type schema:Person
169 sg:person.013064447257.07 schema:affiliation N1390125816194e1d97f55e10a17a3935
170 schema:familyName Alavi
171 schema:givenName Abass
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
173 rdf:type schema:Person
174 sg:person.0601735146.81 schema:affiliation Nddd428681a224687b9e352becb46d373
175 schema:familyName Mozley
176 schema:givenName P. David
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81
178 rdf:type schema:Person
179 sg:person.0615735606.55 schema:affiliation N3e2a0fd6ef9c4ada8805ee793c7415dc
180 schema:familyName Kung
181 schema:givenName Hank F.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55
183 rdf:type schema:Person
184 sg:person.0741446276.03 schema:affiliation Nb1a87139d73b4c11b01f829239650962
185 schema:familyName Kim
186 schema:givenName Hee-Joung
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741446276.03
188 rdf:type schema:Person
189 https://app.dimensions.ai/details/publication/pub.1076202890 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1076424971 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1077689338 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1078031612 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1079646356 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1079779530 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1079780154 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1081684139 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1082823950 schema:CreativeWork
198 https://doi.org/10.1088/0031-9155/30/2/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021290
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0031-9155/37/8/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022350
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/23.106686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061127880
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/42.141641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170019
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tns.1978.4329385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061724779
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tns.1985.4336941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061730389
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1118/1.594457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051290633
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1118/1.595352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006006961
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1118/1.595623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020471448
215 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...