Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

Hee-Joung Kim, Joel S. Karp, P. David Mozley, Seoung-Oh Yang, Dae Hyuk Moon, Hank F. Kung, Hee Kyung Lee, Abass Alavi

ABSTRACT

The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data. More... »

PAGES

153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03165071

DOI

http://dx.doi.org/10.1007/bf03165071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012261407

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8814722


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea", 
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hee-Joung", 
        "id": "sg:person.0741446276.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741446276.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karp", 
        "givenName": "Joel S.", 
        "id": "sg:person.010611461772.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611461772.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozley", 
        "givenName": "P. David", 
        "id": "sg:person.0601735146.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Seoung-Oh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Dae Hyuk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Hank F.", 
        "id": "sg:person.0615735606.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hee Kyung", 
        "id": "sg:person.01061646054.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061646054.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.595352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006006961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.595623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020471448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.594457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051290633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/30/2/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/37/8/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.106686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061127880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.141641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.1978.4329385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061724779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.1985.4336941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061730389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076202890", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076424971", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077689338", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078031612", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079646356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079779530", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079780154", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081684139", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082823950", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03165071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging", 
    "pagination": "153", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a6af09d30e4c28e2eda5411d13387645a2430dda6f3180accd91222e036e82f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8814722"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03165071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012261407"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03165071", 
      "https://app.dimensions.ai/details/publication/pub.1012261407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99809_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03165071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03165071'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      57 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03165071 schema:about N11ed3114cd844cf18d90de62e9b2f8c6
2 N20a12fdab171497c932facc2e3e954df
3 N2df4d38ae48a4a1b90b9b788406db487
4 N40e6a5c42f344d8ea928d6aac7aba8e3
5 N72221f657dd648ac99d04e06354712f6
6 N98522495328146938cf72ec634b4d790
7 N985a245d93234a5d97f5589f9975a211
8 Ndbc8adb6f1274f52a9f60b89d25cb549
9 Neda46923623946b4abf15533185f8857
10 Nf6d4c22c8437421396840af53d81521a
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author N8f5ad218db73438d897ed2701e422afb
14 schema:citation https://app.dimensions.ai/details/publication/pub.1076202890
15 https://app.dimensions.ai/details/publication/pub.1076424971
16 https://app.dimensions.ai/details/publication/pub.1077689338
17 https://app.dimensions.ai/details/publication/pub.1078031612
18 https://app.dimensions.ai/details/publication/pub.1079646356
19 https://app.dimensions.ai/details/publication/pub.1079779530
20 https://app.dimensions.ai/details/publication/pub.1079780154
21 https://app.dimensions.ai/details/publication/pub.1081684139
22 https://app.dimensions.ai/details/publication/pub.1082823950
23 https://doi.org/10.1088/0031-9155/30/2/005
24 https://doi.org/10.1088/0031-9155/37/8/001
25 https://doi.org/10.1109/23.106686
26 https://doi.org/10.1109/42.141641
27 https://doi.org/10.1109/tns.1978.4329385
28 https://doi.org/10.1109/tns.1985.4336941
29 https://doi.org/10.1118/1.594457
30 https://doi.org/10.1118/1.595352
31 https://doi.org/10.1118/1.595623
32 schema:datePublished 1996-03
33 schema:datePublishedReg 1996-03-01
34 schema:description The choice of collimator and the selection of a filter can affect the quality of clinical SPECT images of the brain. The compromises that 4 different collimators make between spatial resolution and sensitivity were studied by imaging a three-dimensional Hoffmann brain phantom. The planar data were acquired with each collimator on a three-headed SPECT system and were reconstructed with both a standard Butterworth filter and a Wiener pre-filter. The reconstructed images were then evaluated by specialists in nuclear medicine and were also quantitatively analyzed with specific regions of interest (ROI) in the brain. All observers preferred the Wiener filter reconstructed images regardless of the collimator used to acquire the planar images. With this filter, the ultrahigh-resolution fan-beam collimator was the most subjectively preferable and quantitatively produced the highest contrast ratios. The findings support suggestions that higher resolution collimators are preferable to higher sensitivity collimators, and indicate that fan-beam collimators are preferable to parallel-hole collimators for clinical SPECT studies of cerebral perfusion. The results also suggest that Wiener filter enhances the quality of SPECT brain images regardless of which collimator is used to acquire the data.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N45a77a0c96814dbdbe5c2611fc6f6347
39 Na5c1f994f8514998bc68d104cc4ad427
40 sg:journal.1099601
41 schema:name Simulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffman brain phantom: Collimator and filter selection in SPECT neuroimaging
42 schema:pagination 153
43 schema:productId N3ae866cc5cc94baea93084dcf9216547
44 N605dba55294e45c083769891b3b940d3
45 Na7d6e975c8cf4ce5b2aa19a8df35adde
46 Nb3efaad69ed74597ad03fd7cffe4a292
47 Nb7775fff3c21428ab0bf29f9280fa82c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012261407
49 https://doi.org/10.1007/bf03165071
50 schema:sdDatePublished 2019-04-11T09:32
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N25a04c8c166d4a5bbc0ba31e4e58a5cc
53 schema:url http://link.springer.com/10.1007%2FBF03165071
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N05c7263b59164d158819f3c9d99926b1 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
58 rdf:type schema:Organization
59 N11ed3114cd844cf18d90de62e9b2f8c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Brain
61 rdf:type schema:DefinedTerm
62 N12155117982841d8a79f8ca2a4b666a2 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
63 Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
64 rdf:type schema:Organization
65 N1e3c269cf2d24ee3ad73e22faf2de592 rdf:first sg:person.0615735606.55
66 rdf:rest N33a521d1c2dd4c0fb51a85c89c810a44
67 N20a12fdab171497c932facc2e3e954df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Technetium
69 rdf:type schema:DefinedTerm
70 N25a04c8c166d4a5bbc0ba31e4e58a5cc schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N2df4d38ae48a4a1b90b9b788406db487 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Phantoms, Imaging
74 rdf:type schema:DefinedTerm
75 N2fc25365a507493d907e103fb3b5185b schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
76 rdf:type schema:Organization
77 N33a521d1c2dd4c0fb51a85c89c810a44 rdf:first sg:person.01061646054.58
78 rdf:rest N976d3c04c34f460ea91b131fbef76fb1
79 N399688f56aa44e648ad1ffa96482c436 schema:affiliation N59f4972b038044e78108f7147af9f6a7
80 schema:familyName Yang
81 schema:givenName Seoung-Oh
82 rdf:type schema:Person
83 N3ae866cc5cc94baea93084dcf9216547 schema:name pubmed_id
84 schema:value 8814722
85 rdf:type schema:PropertyValue
86 N40e6a5c42f344d8ea928d6aac7aba8e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Tomography, Emission-Computed, Single-Photon
88 rdf:type schema:DefinedTerm
89 N45a77a0c96814dbdbe5c2611fc6f6347 schema:volumeNumber 10
90 rdf:type schema:PublicationVolume
91 N46f5036ee48640028f72f1aed73c6524 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
92 rdf:type schema:Organization
93 N59f4972b038044e78108f7147af9f6a7 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
94 rdf:type schema:Organization
95 N605dba55294e45c083769891b3b940d3 schema:name readcube_id
96 schema:value 3a6af09d30e4c28e2eda5411d13387645a2430dda6f3180accd91222e036e82f
97 rdf:type schema:PropertyValue
98 N72221f657dd648ac99d04e06354712f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Image Processing, Computer-Assisted
100 rdf:type schema:DefinedTerm
101 N72e217ef155c4d06afdefe8cddc92ea6 schema:affiliation N2fc25365a507493d907e103fb3b5185b
102 schema:familyName Moon
103 schema:givenName Dae Hyuk
104 rdf:type schema:Person
105 N7ad1d017534f42ee8079d9dc786c75f9 schema:name Department of Nuclear Medicine, University of Ulsan, Asan Medical Center, Korea
106 rdf:type schema:Organization
107 N7ed1c60e215e4a4b8a4c9f6921270480 schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
108 rdf:type schema:Organization
109 N8f5ad218db73438d897ed2701e422afb rdf:first sg:person.0741446276.03
110 rdf:rest Naca6f2ecd902491a9a38a695600e129b
111 N976d3c04c34f460ea91b131fbef76fb1 rdf:first sg:person.013064447257.07
112 rdf:rest rdf:nil
113 N98522495328146938cf72ec634b4d790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Magnetic Resonance Imaging
115 rdf:type schema:DefinedTerm
116 N985a245d93234a5d97f5589f9975a211 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Data Interpretation, Statistical
118 rdf:type schema:DefinedTerm
119 Na5c1f994f8514998bc68d104cc4ad427 schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Na7d6e975c8cf4ce5b2aa19a8df35adde schema:name dimensions_id
122 schema:value pub.1012261407
123 rdf:type schema:PropertyValue
124 Naca6f2ecd902491a9a38a695600e129b rdf:first sg:person.010611461772.35
125 rdf:rest Nc79cab9be11248059a269f26e299a9b2
126 Nb3efaad69ed74597ad03fd7cffe4a292 schema:name doi
127 schema:value 10.1007/bf03165071
128 rdf:type schema:PropertyValue
129 Nb7775fff3c21428ab0bf29f9280fa82c schema:name nlm_unique_id
130 schema:value 8913398
131 rdf:type schema:PropertyValue
132 Nc2b500b19d8749a18fce13627bb3d856 rdf:first N72e217ef155c4d06afdefe8cddc92ea6
133 rdf:rest N1e3c269cf2d24ee3ad73e22faf2de592
134 Nc41982533dcb4b178e66d4dfffee5d78 rdf:first N399688f56aa44e648ad1ffa96482c436
135 rdf:rest Nc2b500b19d8749a18fce13627bb3d856
136 Nc79cab9be11248059a269f26e299a9b2 rdf:first sg:person.0601735146.81
137 rdf:rest Nc41982533dcb4b178e66d4dfffee5d78
138 Ndbc8adb6f1274f52a9f60b89d25cb549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Nebfa92e1089040ff8798810a1bf62daa schema:name Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, USA
142 rdf:type schema:Organization
143 Neda46923623946b4abf15533185f8857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Computer Simulation
145 rdf:type schema:DefinedTerm
146 Nf6d4c22c8437421396840af53d81521a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Evaluation Studies as Topic
148 rdf:type schema:DefinedTerm
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
153 schema:name Neurosciences
154 rdf:type schema:DefinedTerm
155 sg:journal.1099601 schema:issn 0914-7187
156 1864-6433
157 schema:name Annals of Nuclear Medicine
158 rdf:type schema:Periodical
159 sg:person.010611461772.35 schema:affiliation Nebfa92e1089040ff8798810a1bf62daa
160 schema:familyName Karp
161 schema:givenName Joel S.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611461772.35
163 rdf:type schema:Person
164 sg:person.01061646054.58 schema:affiliation N7ad1d017534f42ee8079d9dc786c75f9
165 schema:familyName Lee
166 schema:givenName Hee Kyung
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061646054.58
168 rdf:type schema:Person
169 sg:person.013064447257.07 schema:affiliation N46f5036ee48640028f72f1aed73c6524
170 schema:familyName Alavi
171 schema:givenName Abass
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
173 rdf:type schema:Person
174 sg:person.0601735146.81 schema:affiliation N05c7263b59164d158819f3c9d99926b1
175 schema:familyName Mozley
176 schema:givenName P. David
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81
178 rdf:type schema:Person
179 sg:person.0615735606.55 schema:affiliation N7ed1c60e215e4a4b8a4c9f6921270480
180 schema:familyName Kung
181 schema:givenName Hank F.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55
183 rdf:type schema:Person
184 sg:person.0741446276.03 schema:affiliation N12155117982841d8a79f8ca2a4b666a2
185 schema:familyName Kim
186 schema:givenName Hee-Joung
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741446276.03
188 rdf:type schema:Person
189 https://app.dimensions.ai/details/publication/pub.1076202890 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1076424971 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1077689338 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1078031612 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1079646356 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1079779530 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1079780154 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1081684139 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1082823950 schema:CreativeWork
198 https://doi.org/10.1088/0031-9155/30/2/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021290
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0031-9155/37/8/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022350
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/23.106686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061127880
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/42.141641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170019
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tns.1978.4329385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061724779
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tns.1985.4336941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061730389
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1118/1.594457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051290633
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1118/1.595352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006006961
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1118/1.595623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020471448
215 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...