31P and1H powder ENDOR study of ozonide radicals in carbonated apatites, synthesized from aqueous solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-01

AUTHORS

S. Van Doorslaer, P. Moens, F. Callens, P. Matthys, R. Verbeeck

ABSTRACT

An O3− defect in Na+ CO32− containing apatite powder has been investigated with ENDOR after X-irradiation. The powder, synthesized by a hydrolysis of octo-calciumphosphate (OCP) and Na2CO3 was dried at 25°C until constant weight was reached. At low temperatures, both31P and1H ENDOR spectra were recorded for different settings of the magnetic field (i.e., when the magnetic field is swept through the EPR O3− spectrum). The ENDOR powder spectra were thoroughly analyzed using computer simulations based on the “orientation selection principle”. Interactions with two types of protons and two types of31P nuclei could be resolved. In this way, a detailed model could be established for the O3− ion in the hydroxyapatite lattice. The defect is located between two successive vacant hydroxyl sites. The axis connecting the two outer oxygen atoms (gy-axis) of the O3− ion is found to be along the hexagonalc-axis of the lattice. The twofold axis of the defect ion (gz-axis) is parallel to theb-axis of the lattice. More... »

PAGES

87-102

References to SciGraph publications

  • 1978-12. Radiogenic free radicals as molecular probes in bone in CALCIFIED TISSUE RESEARCH
  • 1981-12. ESR of CO2− in X-irradiated tooth enamel and A-type carbonated apatite in CALCIFIED TISSUE INTERNATIONAL
  • 1994-02. EPR study of carbonate derived and ozonide radicals in carbonated apatites synthesized from aqueous solutions in APPLIED MAGNETIC RESONANCE
  • 1993-12-01. Spectrum Decomposition through Maximum Likelihood Common Factor Analysis of the EPR Spectra of Na+ Containing Carbonated Apatites Dried at 400°C in CALCIFIED TISSUE INTERNATIONAL
  • 1964-12. Crystal Structure of Hydroxyapatite in NATURE
  • 1991-04. The effect of carbonate content and drying temperature on the ESR-spectrum near g=2 of carbonated calciumapatites synthesized from aqueous media in CALCIFIED TISSUE INTERNATIONAL
  • 1978-12. Paramagnetic and crystallographic effects of low temperature ashing on human bone and tooth enamel in CALCIFIED TISSUE RESEARCH
  • 1987-09. The contribution of CO33− and CO2− to the ESR spectrum near g=2 of powdered human tooth enamel in CALCIFIED TISSUE INTERNATIONAL
  • 1981-12. 13C enriched carbonate apatites studied by ESR: Comparison with human tooth enamel apatites in CALCIFIED TISSUE INTERNATIONAL
  • 1993-05. ESR study of 13C-enriched carbonated calciumapatites precipitated from aqueous solutions in CALCIFIED TISSUE INTERNATIONAL
  • 1995-04. 1H and31P ENDOR of the isotropic CO2− signal atg=2.0007 in the EPR spectra of precipitated carbonated apatites in APPLIED MAGNETIC RESONANCE
  • 1979-12. Study of an asymmetric ESR signal in X-irradiated human tooth enamel in CALCIFIED TISSUE INTERNATIONAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf03163101

    DOI

    http://dx.doi.org/10.1007/bf03163101

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051216706


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Doorslaer", 
            "givenName": "S.", 
            "id": "sg:person.01051353513.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051353513.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moens", 
            "givenName": "P.", 
            "id": "sg:person.016340162005.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340162005.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Callens", 
            "givenName": "F.", 
            "id": "sg:person.0711714601.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711714601.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matthys", 
            "givenName": "P.", 
            "id": "sg:person.013511773553.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511773553.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Analytical Chemistry, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratory for Analytical Chemistry, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verbeeck", 
            "givenName": "R.", 
            "id": "sg:person.012464542134.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464542134.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02563791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023952744", 
              "https://doi.org/10.1007/bf02563791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00310204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047989897", 
              "https://doi.org/10.1007/bf00310204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02409416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000704373", 
              "https://doi.org/10.1007/bf02409416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02010757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000557089", 
              "https://doi.org/10.1007/bf02010757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2041050a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044595481", 
              "https://doi.org/10.1038/2041050a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03162485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019717845", 
              "https://doi.org/10.1007/bf03162485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02409421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035911825", 
              "https://doi.org/10.1007/bf02409421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03162350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050348120", 
              "https://doi.org/10.1007/bf03162350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02408063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050867012", 
              "https://doi.org/10.1007/bf02408063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02010749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046941909", 
              "https://doi.org/10.1007/bf02010749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03549785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082742551", 
              "https://doi.org/10.1007/bf03549785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02556376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019969163", 
              "https://doi.org/10.1007/bf02556376"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-01", 
        "datePublishedReg": "1996-01-01", 
        "description": "An O3\u2212 defect in Na+ CO32\u2212 containing apatite powder has been investigated with ENDOR after X-irradiation. The powder, synthesized by a hydrolysis of octo-calciumphosphate (OCP) and Na2CO3 was dried at 25\u00b0C until constant weight was reached. At low temperatures, both31P and1H ENDOR spectra were recorded for different settings of the magnetic field (i.e., when the magnetic field is swept through the EPR O3\u2212 spectrum). The ENDOR powder spectra were thoroughly analyzed using computer simulations based on the \u201corientation selection principle\u201d. Interactions with two types of protons and two types of31P nuclei could be resolved. In this way, a detailed model could be established for the O3\u2212 ion in the hydroxyapatite lattice. The defect is located between two successive vacant hydroxyl sites. The axis connecting the two outer oxygen atoms (gy-axis) of the O3\u2212 ion is found to be along the hexagonalc-axis of the lattice. The twofold axis of the defect ion (gz-axis) is parallel to theb-axis of the lattice.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf03163101", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1102112", 
            "issn": [
              "0937-9347", 
              "1613-7507"
            ], 
            "name": "Applied Magnetic Resonance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "apatite powder", 
          "detailed model", 
          "powder", 
          "low temperature", 
          "magnetic field", 
          "hydroxyapatite lattice", 
          "aqueous solution", 
          "computer simulations", 
          "hydroxyl sites", 
          "defect ions", 
          "constant weight", 
          "selection principle", 
          "simulations", 
          "calciumphosphate", 
          "temperature", 
          "Na2CO3", 
          "ions", 
          "defects", 
          "lattice", 
          "solution", 
          "field", 
          "apatite", 
          "spectra", 
          "model", 
          "principles", 
          "powder spectra", 
          "axis", 
          "oxygen atoms", 
          "types", 
          "hydrolysis", 
          "types of protons", 
          "interaction", 
          "atoms", 
          "way", 
          "study", 
          "radicals", 
          "weight", 
          "protons", 
          "sites", 
          "different settings", 
          "ENDOR powder spectra", 
          "ENDOR spectra", 
          "setting", 
          "ENDOR", 
          "ENDOR study", 
          "nucleus", 
          "twofold axis", 
          "X-irradiation", 
          "outer oxygen atoms"
        ], 
        "name": "31P and1H powder ENDOR study of ozonide radicals in carbonated apatites, synthesized from aqueous solutions", 
        "pagination": "87-102", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051216706"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf03163101"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf03163101", 
          "https://app.dimensions.ai/details/publication/pub.1051216706"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_282.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf03163101"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03163101'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03163101'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03163101'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03163101'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      86 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf03163101 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N6cdd2708ffe8471fb85419c6e5038143
    4 schema:citation sg:pub.10.1007/bf00310204
    5 sg:pub.10.1007/bf02010749
    6 sg:pub.10.1007/bf02010757
    7 sg:pub.10.1007/bf02408063
    8 sg:pub.10.1007/bf02409416
    9 sg:pub.10.1007/bf02409421
    10 sg:pub.10.1007/bf02556376
    11 sg:pub.10.1007/bf02563791
    12 sg:pub.10.1007/bf03162350
    13 sg:pub.10.1007/bf03162485
    14 sg:pub.10.1007/bf03549785
    15 sg:pub.10.1038/2041050a0
    16 schema:datePublished 1996-01
    17 schema:datePublishedReg 1996-01-01
    18 schema:description An O3− defect in Na+ CO32− containing apatite powder has been investigated with ENDOR after X-irradiation. The powder, synthesized by a hydrolysis of octo-calciumphosphate (OCP) and Na2CO3 was dried at 25°C until constant weight was reached. At low temperatures, both31P and1H ENDOR spectra were recorded for different settings of the magnetic field (i.e., when the magnetic field is swept through the EPR O3− spectrum). The ENDOR powder spectra were thoroughly analyzed using computer simulations based on the “orientation selection principle”. Interactions with two types of protons and two types of31P nuclei could be resolved. In this way, a detailed model could be established for the O3− ion in the hydroxyapatite lattice. The defect is located between two successive vacant hydroxyl sites. The axis connecting the two outer oxygen atoms (gy-axis) of the O3− ion is found to be along the hexagonalc-axis of the lattice. The twofold axis of the defect ion (gz-axis) is parallel to theb-axis of the lattice.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N78438fecec39462f85d6ede4310fba6d
    22 Ne882e0ff26f44816a08cd223f4e130f7
    23 sg:journal.1102112
    24 schema:keywords ENDOR
    25 ENDOR powder spectra
    26 ENDOR spectra
    27 ENDOR study
    28 Na2CO3
    29 X-irradiation
    30 apatite
    31 apatite powder
    32 aqueous solution
    33 atoms
    34 axis
    35 calciumphosphate
    36 computer simulations
    37 constant weight
    38 defect ions
    39 defects
    40 detailed model
    41 different settings
    42 field
    43 hydrolysis
    44 hydroxyapatite lattice
    45 hydroxyl sites
    46 interaction
    47 ions
    48 lattice
    49 low temperature
    50 magnetic field
    51 model
    52 nucleus
    53 outer oxygen atoms
    54 oxygen atoms
    55 powder
    56 powder spectra
    57 principles
    58 protons
    59 radicals
    60 selection principle
    61 setting
    62 simulations
    63 sites
    64 solution
    65 spectra
    66 study
    67 temperature
    68 twofold axis
    69 types
    70 types of protons
    71 way
    72 weight
    73 schema:name 31P and1H powder ENDOR study of ozonide radicals in carbonated apatites, synthesized from aqueous solutions
    74 schema:pagination 87-102
    75 schema:productId N9c38200f67044726be4fb475f6b85233
    76 Nd74f89d1f1b04ce58861dc7ad66b285d
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051216706
    78 https://doi.org/10.1007/bf03163101
    79 schema:sdDatePublished 2022-08-04T16:53
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Nde81a4689cb443c88a72cf910c6a0be8
    82 schema:url https://doi.org/10.1007/bf03163101
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N3104a02a805f4a5fbc9bbfd55682a21c rdf:first sg:person.012464542134.27
    87 rdf:rest rdf:nil
    88 N3f546c4a50b04342a5d30703d0d03fe7 rdf:first sg:person.0711714601.87
    89 rdf:rest Nb74be9ea91784d00b0f377ec4fde4c25
    90 N6cdd2708ffe8471fb85419c6e5038143 rdf:first sg:person.01051353513.87
    91 rdf:rest N996357b2a1fc4aa7988cf827bc284803
    92 N78438fecec39462f85d6ede4310fba6d schema:issueNumber 1-3
    93 rdf:type schema:PublicationIssue
    94 N996357b2a1fc4aa7988cf827bc284803 rdf:first sg:person.016340162005.16
    95 rdf:rest N3f546c4a50b04342a5d30703d0d03fe7
    96 N9c38200f67044726be4fb475f6b85233 schema:name dimensions_id
    97 schema:value pub.1051216706
    98 rdf:type schema:PropertyValue
    99 Nb74be9ea91784d00b0f377ec4fde4c25 rdf:first sg:person.013511773553.17
    100 rdf:rest N3104a02a805f4a5fbc9bbfd55682a21c
    101 Nd74f89d1f1b04ce58861dc7ad66b285d schema:name doi
    102 schema:value 10.1007/bf03163101
    103 rdf:type schema:PropertyValue
    104 Nde81a4689cb443c88a72cf910c6a0be8 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 Ne882e0ff26f44816a08cd223f4e130f7 schema:volumeNumber 10
    107 rdf:type schema:PublicationVolume
    108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Physical Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Other Physical Sciences
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1102112 schema:issn 0937-9347
    115 1613-7507
    116 schema:name Applied Magnetic Resonance
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.01051353513.87 schema:affiliation grid-institutes:None
    120 schema:familyName Van Doorslaer
    121 schema:givenName S.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051353513.87
    123 rdf:type schema:Person
    124 sg:person.012464542134.27 schema:affiliation grid-institutes:None
    125 schema:familyName Verbeeck
    126 schema:givenName R.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464542134.27
    128 rdf:type schema:Person
    129 sg:person.013511773553.17 schema:affiliation grid-institutes:None
    130 schema:familyName Matthys
    131 schema:givenName P.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511773553.17
    133 rdf:type schema:Person
    134 sg:person.016340162005.16 schema:affiliation grid-institutes:None
    135 schema:familyName Moens
    136 schema:givenName P.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340162005.16
    138 rdf:type schema:Person
    139 sg:person.0711714601.87 schema:affiliation grid-institutes:None
    140 schema:familyName Callens
    141 schema:givenName F.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711714601.87
    143 rdf:type schema:Person
    144 sg:pub.10.1007/bf00310204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047989897
    145 https://doi.org/10.1007/bf00310204
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02010749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046941909
    148 https://doi.org/10.1007/bf02010749
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02010757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000557089
    151 https://doi.org/10.1007/bf02010757
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02408063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867012
    154 https://doi.org/10.1007/bf02408063
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02409416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000704373
    157 https://doi.org/10.1007/bf02409416
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02409421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035911825
    160 https://doi.org/10.1007/bf02409421
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02556376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019969163
    163 https://doi.org/10.1007/bf02556376
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf02563791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023952744
    166 https://doi.org/10.1007/bf02563791
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf03162350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050348120
    169 https://doi.org/10.1007/bf03162350
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf03162485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019717845
    172 https://doi.org/10.1007/bf03162485
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf03549785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082742551
    175 https://doi.org/10.1007/bf03549785
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/2041050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044595481
    178 https://doi.org/10.1038/2041050a0
    179 rdf:type schema:CreativeWork
    180 grid-institutes:None schema:alternateName Laboratory for Analytical Chemistry, Gent, Belgium
    181 Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium
    182 schema:name Laboratory for Analytical Chemistry, Gent, Belgium
    183 Laboratory for Crystallography and Study of the Solid State, Krijgslaan 281-S1, B-9000, Gent, Belgium
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...