Inverse computation and the Universal Resolving Algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Sergei Abramov, Robert Glück

ABSTRACT

We survey fundamental concepts for inverse programming and then present the Universal Resolving Algorithm, an algorithm for inverse computation in a first-order, functional programming language. We discuss the key concepts of the algorithm, including a three-step approach based on the notion of a perfect process tree, and demonstrate our implementation with several examples of inverse computation. More... »

PAGES

31-45

References to SciGraph publications

  • 1989. InvX: An automatic function inverter in REWRITING TECHNIQUES AND APPLICATIONS
  • 1996. Program transformation with metasystem transitions: Experiments with a supercompiler in PERSPECTIVES OF SYSTEM INFORMATICS
  • 1981. The Science of Programming in NONE
  • 1993. Occam's razor in metacomputation: the notion of a perfect process tree in STATIC ANALYSIS
  • 2005-06-26. The essence of program transformation by partial evaluation and driving in LOGIC, LANGUAGE AND COMPUTATION
  • 1994. Partial deduction and driving are equivalent in PROGRAMMING LANGUAGE IMPLEMENTATION AND LOGIC PROGRAMMING
  • 1999. An Introduction to Online and Offline Partial Evaluation Using a Simple Flowchart Language in PARTIAL EVALUATION
  • 2000. The Universal Resolving Algorithm: Inverse Computation in a Functional Language in MATHEMATICS OF PROGRAM CONSTRUCTION
  • 1987. Foundations of Logic Programming in NONE
  • 1997-05. Running programs backwards: The logical inversion of imperative computation in FORMAL ASPECTS OF COMPUTING
  • 1992-03. On the synthesis of function inverses in ACTA INFORMATICA
  • 2000-11-24. Combining Semantics with Non-standard Interpreter Hierarchies in FST TCS 2000: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE
  • 2000-01-28. On Perfect Supercompilation in PERSPECTIVES OF SYSTEM INFORMATICS
  • 1996. A roadmap to metacomputation by supercompilation in PARTIAL EVALUATION
  • 1998-03. On the degeneration of program generators by program composition in NEW GENERATION COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf03160224

    DOI

    http://dx.doi.org/10.1007/bf03160224

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019905096


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Program Systems Institute Russian Academy of Sciences, RU-152140, Pereslavl-Zalessky, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abramov", 
            "givenName": "Sergei", 
            "id": "sg:person.010307436465.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307436465.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Waseda University", 
              "id": "https://www.grid.ac/institutes/grid.5290.e", 
              "name": [
                "PRESTO, JST & Institute for Software Production Technology, Waseda University, 169-8555, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gl\u00fcck", 
            "givenName": "Robert", 
            "id": "sg:person.010754010217.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0020-0190(97)00055-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000980817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-57264-3_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003987904", 
              "https://doi.org/10.1007/3-540-57264-3_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62064-8_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007045901", 
              "https://doi.org/10.1007/3-540-62064-8_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008568428", 
              "https://doi.org/10.1007/bf01211087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008568428", 
              "https://doi.org/10.1007/bf01211087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61580-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008923491", 
              "https://doi.org/10.1007/3-540-61580-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359131.359136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012558000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47018-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013466468", 
              "https://doi.org/10.1007/3-540-47018-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016029570", 
              "https://doi.org/10.1007/978-3-642-83189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016029570", 
              "https://doi.org/10.1007/978-3-642-83189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/5956.5957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016193336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46562-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016922795", 
              "https://doi.org/10.1007/3-540-46562-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46562-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016922795", 
              "https://doi.org/10.1007/3-540-46562-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(90)90147-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019824477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01185679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024052891", 
              "https://doi.org/10.1007/bf01185679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01185679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024052891", 
              "https://doi.org/10.1007/bf01185679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6423(90)90042-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024446635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58402-1_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026985651", 
              "https://doi.org/10.1007/3-540-58402-1_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0032402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027875008", 
              "https://doi.org/10.1007/bfb0032402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0743-1066(94)90034-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028239269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800001167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038404271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44450-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007835", 
              "https://doi.org/10.1007/3-540-44450-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44450-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007835", 
              "https://doi.org/10.1007/3-540-44450-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03037321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042200080", 
              "https://doi.org/10.1007/bf03037321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03037321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042200080", 
              "https://doi.org/10.1007/bf03037321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800002008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042426034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/96877.96953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043736510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5983-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045860299", 
              "https://doi.org/10.1007/978-1-4612-5983-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5983-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045860299", 
              "https://doi.org/10.1007/978-1-4612-5983-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10722010_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048205783", 
              "https://doi.org/10.1007/10722010_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10722010_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048205783", 
              "https://doi.org/10.1007/10722010_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/367177.367199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-51081-8_139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053186517", 
              "https://doi.org/10.1007/3-540-51081-8_139"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-03", 
        "datePublishedReg": "2001-03-01", 
        "description": "We survey fundamental concepts for inverse programming and then present the Universal Resolving Algorithm, an algorithm for inverse computation in a first-order, functional programming language. We discuss the key concepts of the algorithm, including a three-step approach based on the notion of a perfect process tree, and demonstrate our implementation with several examples of inverse computation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf03160224", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135877", 
            "issn": [
              "1007-1202", 
              "1993-4998"
            ], 
            "name": "Wuhan University Journal of Natural Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Inverse computation and the Universal Resolving Algorithm", 
        "pagination": "31-45", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5ed6c9e83c7267902a0ff44054434b04042e4ed88ab089ee12a3ea98b8bf7a5c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf03160224"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019905096"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf03160224", 
          "https://app.dimensions.ai/details/publication/pub.1019905096"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13106_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF03160224"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03160224'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03160224'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03160224'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03160224'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf03160224 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 schema:author N071d66f5cad548deba862c9a1c1a611f
    4 schema:citation sg:pub.10.1007/10722010_13
    5 sg:pub.10.1007/3-540-44450-5_16
    6 sg:pub.10.1007/3-540-46562-6_10
    7 sg:pub.10.1007/3-540-47018-2_2
    8 sg:pub.10.1007/3-540-51081-8_139
    9 sg:pub.10.1007/3-540-57264-3_34
    10 sg:pub.10.1007/3-540-58402-1_13
    11 sg:pub.10.1007/3-540-61580-6_8
    12 sg:pub.10.1007/3-540-62064-8_21
    13 sg:pub.10.1007/978-1-4612-5983-1
    14 sg:pub.10.1007/978-3-642-83189-8
    15 sg:pub.10.1007/bf01185679
    16 sg:pub.10.1007/bf01211087
    17 sg:pub.10.1007/bf03037321
    18 sg:pub.10.1007/bfb0032402
    19 https://doi.org/10.1016/0167-6423(90)90042-c
    20 https://doi.org/10.1016/0304-3975(90)90147-a
    21 https://doi.org/10.1016/0743-1066(94)90034-5
    22 https://doi.org/10.1016/s0020-0190(97)00055-0
    23 https://doi.org/10.1017/s0956796800001167
    24 https://doi.org/10.1017/s0956796800002008
    25 https://doi.org/10.1145/359131.359136
    26 https://doi.org/10.1145/367177.367199
    27 https://doi.org/10.1145/5956.5957
    28 https://doi.org/10.1145/96877.96953
    29 schema:datePublished 2001-03
    30 schema:datePublishedReg 2001-03-01
    31 schema:description We survey fundamental concepts for inverse programming and then present the Universal Resolving Algorithm, an algorithm for inverse computation in a first-order, functional programming language. We discuss the key concepts of the algorithm, including a three-step approach based on the notion of a perfect process tree, and demonstrate our implementation with several examples of inverse computation.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N98c80a30fffb458fb310eb8933af720c
    36 Nd56dce5fe5c642fb99c1b66d2e88eae6
    37 sg:journal.1135877
    38 schema:name Inverse computation and the Universal Resolving Algorithm
    39 schema:pagination 31-45
    40 schema:productId N25921c53730d4c48840a3310bf8dfca8
    41 N39b6a43c5d474dd687ff93b262f68096
    42 N49977656b7654a40964aca74135166a3
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019905096
    44 https://doi.org/10.1007/bf03160224
    45 schema:sdDatePublished 2019-04-11T14:33
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N351f77c5f0654d8bae38a11960f51f2d
    48 schema:url http://link.springer.com/10.1007%2FBF03160224
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N071d66f5cad548deba862c9a1c1a611f rdf:first sg:person.010307436465.27
    53 rdf:rest Nde45fc2f6ba44703af0dfe6c93881d31
    54 N25921c53730d4c48840a3310bf8dfca8 schema:name readcube_id
    55 schema:value 5ed6c9e83c7267902a0ff44054434b04042e4ed88ab089ee12a3ea98b8bf7a5c
    56 rdf:type schema:PropertyValue
    57 N351f77c5f0654d8bae38a11960f51f2d schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N39b6a43c5d474dd687ff93b262f68096 schema:name dimensions_id
    60 schema:value pub.1019905096
    61 rdf:type schema:PropertyValue
    62 N49977656b7654a40964aca74135166a3 schema:name doi
    63 schema:value 10.1007/bf03160224
    64 rdf:type schema:PropertyValue
    65 N98c80a30fffb458fb310eb8933af720c schema:volumeNumber 6
    66 rdf:type schema:PublicationVolume
    67 Nd4c5540a80db42abaca7a2fb4c9a9aed schema:name Program Systems Institute Russian Academy of Sciences, RU-152140, Pereslavl-Zalessky, Russia
    68 rdf:type schema:Organization
    69 Nd56dce5fe5c642fb99c1b66d2e88eae6 schema:issueNumber 1-2
    70 rdf:type schema:PublicationIssue
    71 Nde45fc2f6ba44703af0dfe6c93881d31 rdf:first sg:person.010754010217.31
    72 rdf:rest rdf:nil
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Computer Software
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1135877 schema:issn 1007-1202
    80 1993-4998
    81 schema:name Wuhan University Journal of Natural Sciences
    82 rdf:type schema:Periodical
    83 sg:person.010307436465.27 schema:affiliation Nd4c5540a80db42abaca7a2fb4c9a9aed
    84 schema:familyName Abramov
    85 schema:givenName Sergei
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307436465.27
    87 rdf:type schema:Person
    88 sg:person.010754010217.31 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
    89 schema:familyName Glück
    90 schema:givenName Robert
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31
    92 rdf:type schema:Person
    93 sg:pub.10.1007/10722010_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048205783
    94 https://doi.org/10.1007/10722010_13
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/3-540-44450-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007835
    97 https://doi.org/10.1007/3-540-44450-5_16
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/3-540-46562-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016922795
    100 https://doi.org/10.1007/3-540-46562-6_10
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/3-540-47018-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013466468
    103 https://doi.org/10.1007/3-540-47018-2_2
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/3-540-51081-8_139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053186517
    106 https://doi.org/10.1007/3-540-51081-8_139
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/3-540-57264-3_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003987904
    109 https://doi.org/10.1007/3-540-57264-3_34
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/3-540-58402-1_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026985651
    112 https://doi.org/10.1007/3-540-58402-1_13
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/3-540-61580-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008923491
    115 https://doi.org/10.1007/3-540-61580-6_8
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/3-540-62064-8_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007045901
    118 https://doi.org/10.1007/3-540-62064-8_21
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-1-4612-5983-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045860299
    121 https://doi.org/10.1007/978-1-4612-5983-1
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-642-83189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016029570
    124 https://doi.org/10.1007/978-3-642-83189-8
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01185679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024052891
    127 https://doi.org/10.1007/bf01185679
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01211087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008568428
    130 https://doi.org/10.1007/bf01211087
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf03037321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042200080
    133 https://doi.org/10.1007/bf03037321
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bfb0032402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027875008
    136 https://doi.org/10.1007/bfb0032402
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/0167-6423(90)90042-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1024446635
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/0304-3975(90)90147-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019824477
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/0743-1066(94)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028239269
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0020-0190(97)00055-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000980817
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1017/s0956796800001167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404271
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1017/s0956796800002008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042426034
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/359131.359136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012558000
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1145/367177.367199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543462
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1145/5956.5957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016193336
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1145/96877.96953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043736510
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.5290.e schema:alternateName Waseda University
    159 schema:name PRESTO, JST & Institute for Software Production Technology, Waseda University, 169-8555, Tokyo, Japan
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...