Evolvable hardware: A robot navigation system testbed View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Didier Keymeulen, Masaya Iwata, Kenji Konaka, Yasuo Kuniyoshi, Tetsuya Higuchi

ABSTRACT

Recently there has been great interest in the design and study of evolvable systems based on Artificial Life principles in order to monitor and control the behavior of physically embedded systems such as mobile robots, plants and intelligent home devices. At the same time new integrated circuits calledsoftware-reconfigurable devices have been introduced which are able to adapt their hardware almost continuously to changes in the input data or processing. When the configuration phase and the execution phase are concurrent, the software-reconfigurable device is calledevolvable hardware (EHW). This paper examines an evolutionary navigation system for a mobile robot using a Boolean function approach implemented on gate-level evolvable hardware (EHW). The task of the mobile robot is to reach a goal represented by a colored ball while avoiding obstacles during its motion. We show that the Boolean function approach using dedicated evolution rules is sufficient to build the desired behavior and its hardware implementation using EHW allows to decrease the learning time for on-line training. We demonstrate the effectiveness of the generalization ability of the Boolean function approach using EHW due to its representation and evolution mechanism. The results show that the evolvable hardware configuration learned off-line in a simple environment creates a robust robot behavior which is able to perform the desired behaviors in more complex environments and which is insensitive to the gap between the real and simulated world. More... »

PAGES

97-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03037313

DOI

http://dx.doi.org/10.1007/bf03037313

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016788693


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keymeulen", 
        "givenName": "Didier", 
        "id": "sg:person.014247434252.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247434252.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwata", 
        "givenName": "Masaya", 
        "id": "sg:person.016472422377.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472422377.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konaka", 
        "givenName": "Kenji", 
        "id": "sg:person.016430222666.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016430222666.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "id": "sg:person.013372311431.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higuchi", 
        "givenName": "Tetsuya", 
        "id": "sg:person.015077461377.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077461377.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-1533-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001042210", 
          "https://doi.org/10.1007/978-1-4613-1533-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-59496-5_332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001958414", 
          "https://doi.org/10.1007/3-540-59496-5_332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1381-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004245629", 
          "https://doi.org/10.1007/978-1-4613-1381-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1381-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004245629", 
          "https://doi.org/10.1007/978-1-4613-1381-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50090-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008893008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013038704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00993348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013826850", 
          "https://doi.org/10.1007/bf00993348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015736893", 
          "https://doi.org/10.1007/bf00116876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971239300200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018217914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971239300200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018217914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/artl.1995.2.4.417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00113896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020064364", 
          "https://doi.org/10.1007/bf00113896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971239200100105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026360089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/105971239200100105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026360089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00115009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028679285", 
          "https://doi.org/10.1007/bf00115009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030423455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030423455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00993347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410020", 
          "https://doi.org/10.1007/bf00993347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00992698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033088958", 
          "https://doi.org/10.1007/bf00992698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8890(96)00034-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1968.1972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038881641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-247-2.50042-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044943500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049788334", 
          "https://doi.org/10.1007/bf00058679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-141-3.50030-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051599773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0697-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056556886", 
          "https://doi.org/10.1038/scientificamerican0697-66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.214773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.558708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jra.1986.1087032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061308611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.27-0936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073293339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fpa.1994.636088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094942629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icec.1997.592361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095040475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.1996.568989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095624088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "Recently there has been great interest in the design and study of evolvable systems based on Artificial Life principles in order to monitor and control the behavior of physically embedded systems such as mobile robots, plants and intelligent home devices. At the same time new integrated circuits calledsoftware-reconfigurable devices have been introduced which are able to adapt their hardware almost continuously to changes in the input data or processing. When the configuration phase and the execution phase are concurrent, the software-reconfigurable device is calledevolvable hardware (EHW). This paper examines an evolutionary navigation system for a mobile robot using a Boolean function approach implemented on gate-level evolvable hardware (EHW). The task of the mobile robot is to reach a goal represented by a colored ball while avoiding obstacles during its motion. We show that the Boolean function approach using dedicated evolution rules is sufficient to build the desired behavior and its hardware implementation using EHW allows to decrease the learning time for on-line training. We demonstrate the effectiveness of the generalization ability of the Boolean function approach using EHW due to its representation and evolution mechanism. The results show that the evolvable hardware configuration learned off-line in a simple environment creates a robust robot behavior which is able to perform the desired behaviors in more complex environments and which is insensitive to the gap between the real and simulated world.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03037313", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Evolvable hardware: A robot navigation system testbed", 
    "pagination": "97-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ffde12b70c7051bdad8b2f1c54fd4dfd68f7575309c971c6e69fb5e1f7ea824"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03037313"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016788693"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03037313", 
      "https://app.dimensions.ai/details/publication/pub.1016788693"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47966_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03037313"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03037313'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03037313'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03037313'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03037313'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03037313 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2eaed4a406d9408d8865796c8174d87e
4 schema:citation sg:pub.10.1007/3-540-59496-5_332
5 sg:pub.10.1007/978-1-4613-1381-6
6 sg:pub.10.1007/978-1-4613-1533-9_5
7 sg:pub.10.1007/bf00058679
8 sg:pub.10.1007/bf00113896
9 sg:pub.10.1007/bf00115009
10 sg:pub.10.1007/bf00116876
11 sg:pub.10.1007/bf00992698
12 sg:pub.10.1007/bf00993347
13 sg:pub.10.1007/bf00993348
14 sg:pub.10.1038/scientificamerican0697-66
15 https://doi.org/10.1016/0004-3702(94)90047-7
16 https://doi.org/10.1016/b978-1-55860-036-2.50087-4
17 https://doi.org/10.1016/b978-1-55860-036-2.50090-4
18 https://doi.org/10.1016/b978-1-55860-141-3.50030-4
19 https://doi.org/10.1016/b978-1-55860-247-2.50042-5
20 https://doi.org/10.1016/s0921-8890(96)00034-6
21 https://doi.org/10.1109/21.214773
22 https://doi.org/10.1109/5.558708
23 https://doi.org/10.1109/fpa.1994.636088
24 https://doi.org/10.1109/icec.1997.592361
25 https://doi.org/10.1109/iros.1996.568989
26 https://doi.org/10.1109/jra.1986.1087032
27 https://doi.org/10.1145/1968.1972
28 https://doi.org/10.1162/artl.1995.2.4.417
29 https://doi.org/10.1177/105971239200100105
30 https://doi.org/10.1177/105971239300200104
31 https://doi.org/10.5860/choice.27-0936
32 schema:datePublished 1998-06
33 schema:datePublishedReg 1998-06-01
34 schema:description Recently there has been great interest in the design and study of evolvable systems based on Artificial Life principles in order to monitor and control the behavior of physically embedded systems such as mobile robots, plants and intelligent home devices. At the same time new integrated circuits calledsoftware-reconfigurable devices have been introduced which are able to adapt their hardware almost continuously to changes in the input data or processing. When the configuration phase and the execution phase are concurrent, the software-reconfigurable device is calledevolvable hardware (EHW). This paper examines an evolutionary navigation system for a mobile robot using a Boolean function approach implemented on gate-level evolvable hardware (EHW). The task of the mobile robot is to reach a goal represented by a colored ball while avoiding obstacles during its motion. We show that the Boolean function approach using dedicated evolution rules is sufficient to build the desired behavior and its hardware implementation using EHW allows to decrease the learning time for on-line training. We demonstrate the effectiveness of the generalization ability of the Boolean function approach using EHW due to its representation and evolution mechanism. The results show that the evolvable hardware configuration learned off-line in a simple environment creates a robust robot behavior which is able to perform the desired behaviors in more complex environments and which is insensitive to the gap between the real and simulated world.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N610d75a3d4684aa29aa70a3d8a1e87d1
39 Nbd7565e3d9b6407b88ff4d680d3b53c1
40 sg:journal.1053619
41 schema:name Evolvable hardware: A robot navigation system testbed
42 schema:pagination 97-122
43 schema:productId N0ae0328ea0ce41529ed65cd81d27a834
44 N9c234fdcd4b249168a4410ab0e8b9095
45 Na99296c5dfc648079620baaa4d0c5fa0
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788693
47 https://doi.org/10.1007/bf03037313
48 schema:sdDatePublished 2019-04-11T09:09
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7ad12c39fdbd4cfc9f00f92c0b4815b8
51 schema:url http://link.springer.com/10.1007%2FBF03037313
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N089eff50fcf3479faaca7cbe44d3e4cc rdf:first sg:person.015077461377.45
56 rdf:rest rdf:nil
57 N0ae0328ea0ce41529ed65cd81d27a834 schema:name doi
58 schema:value 10.1007/bf03037313
59 rdf:type schema:PropertyValue
60 N1db0ec71c34a45338657b0c93aed08a5 rdf:first sg:person.013372311431.62
61 rdf:rest N089eff50fcf3479faaca7cbe44d3e4cc
62 N2eaed4a406d9408d8865796c8174d87e rdf:first sg:person.014247434252.15
63 rdf:rest Naa762654688246fdb2ff9f9d935c68b9
64 N610d75a3d4684aa29aa70a3d8a1e87d1 schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 N7ad12c39fdbd4cfc9f00f92c0b4815b8 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N9c234fdcd4b249168a4410ab0e8b9095 schema:name dimensions_id
69 schema:value pub.1016788693
70 rdf:type schema:PropertyValue
71 Na99296c5dfc648079620baaa4d0c5fa0 schema:name readcube_id
72 schema:value 4ffde12b70c7051bdad8b2f1c54fd4dfd68f7575309c971c6e69fb5e1f7ea824
73 rdf:type schema:PropertyValue
74 Naa762654688246fdb2ff9f9d935c68b9 rdf:first sg:person.016472422377.52
75 rdf:rest Nbb1c8473c41747baadfb8ed6d467e389
76 Nbb1c8473c41747baadfb8ed6d467e389 rdf:first sg:person.016430222666.41
77 rdf:rest N1db0ec71c34a45338657b0c93aed08a5
78 Nbd7565e3d9b6407b88ff4d680d3b53c1 schema:volumeNumber 16
79 rdf:type schema:PublicationVolume
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1053619 schema:issn 0288-3635
87 1882-7055
88 schema:name New Generation Computing
89 rdf:type schema:Periodical
90 sg:person.013372311431.62 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
91 schema:familyName Kuniyoshi
92 schema:givenName Yasuo
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62
94 rdf:type schema:Person
95 sg:person.014247434252.15 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
96 schema:familyName Keymeulen
97 schema:givenName Didier
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247434252.15
99 rdf:type schema:Person
100 sg:person.015077461377.45 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
101 schema:familyName Higuchi
102 schema:givenName Tetsuya
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077461377.45
104 rdf:type schema:Person
105 sg:person.016430222666.41 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
106 schema:familyName Konaka
107 schema:givenName Kenji
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016430222666.41
109 rdf:type schema:Person
110 sg:person.016472422377.52 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
111 schema:familyName Iwata
112 schema:givenName Masaya
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472422377.52
114 rdf:type schema:Person
115 sg:pub.10.1007/3-540-59496-5_332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001958414
116 https://doi.org/10.1007/3-540-59496-5_332
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-1-4613-1381-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004245629
119 https://doi.org/10.1007/978-1-4613-1381-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-1-4613-1533-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001042210
122 https://doi.org/10.1007/978-1-4613-1533-9_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf00058679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049788334
125 https://doi.org/10.1007/bf00058679
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf00113896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020064364
128 https://doi.org/10.1007/bf00113896
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf00115009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028679285
131 https://doi.org/10.1007/bf00115009
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf00116876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015736893
134 https://doi.org/10.1007/bf00116876
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00992698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033088958
137 https://doi.org/10.1007/bf00992698
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf00993347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410020
140 https://doi.org/10.1007/bf00993347
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf00993348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013826850
143 https://doi.org/10.1007/bf00993348
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/scientificamerican0697-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056556886
146 https://doi.org/10.1038/scientificamerican0697-66
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0004-3702(94)90047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030423455
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/b978-1-55860-036-2.50087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013038704
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/b978-1-55860-036-2.50090-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008893008
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/b978-1-55860-141-3.50030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051599773
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/b978-1-55860-247-2.50042-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943500
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0921-8890(96)00034-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103976
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/21.214773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121571
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/5.558708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179665
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/fpa.1994.636088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094942629
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icec.1997.592361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095040475
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/iros.1996.568989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095624088
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/jra.1986.1087032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061308611
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1145/1968.1972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038881641
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1162/artl.1995.2.4.417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019782811
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1177/105971239200100105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026360089
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1177/105971239300200104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018217914
179 rdf:type schema:CreativeWork
180 https://doi.org/10.5860/choice.27-0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073293339
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
183 schema:name Electrotechnical Laboratory, 305, Tsukuba, Ibaraki, Japan
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...