Constrained relative least general generalization for Inducing Constraint Logic Programs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

Fumio Mizoguchi, Hayato Ohwada

ABSTRACT

Relative least general generalization proposed by Plotkin, is widely used for generalizing first-order clauses in Inductive Logic Programming, and this paper describes an extension of Plotkin’s work to allow various computation domains: Herbrand Universe, sets, numerical data, ect. The ϕ-subsumption in Plotkin’s framework is replaced by a more general constraint-based subsumption. Since this replacement is analogous to that of unification by constraint solving in Constraint Logic Programming, the resultant method can be viewed as a Constraint Logic Programming version of relative least general generalization. Constraint-based subsumption, however, leads to a search on an intractably large hypothesis space. We therefore providemeta-level constraints that are used as semantic bias on the hypothesis language. The constraintsfunctional dependency andmonotonicity are introduced by analyzing clausal relationships. Finally, the advantage of the proposed method is demonstrated through a simple layout problem, where geometric constraints used in space planning tasks are produced automatically. More... »

PAGES

335-368

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03037230

DOI

http://dx.doi.org/10.1007/bf03037230

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020684666


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Science University of Tokyo, Noda, 278, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizoguchi", 
        "givenName": "Fumio", 
        "id": "sg:person.016572641111.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572641111.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Science University of Tokyo, Noda, 278, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohwada", 
        "givenName": "Hayato", 
        "id": "sg:person.012070407311.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070407311.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/181668.181671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001564613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011890293", 
          "https://doi.org/10.1007/bf03037187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011890293", 
          "https://doi.org/10.1007/bf03037187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-5401(89)90010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017419784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/41625.41635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026286480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029967430", 
          "https://doi.org/10.1007/bf03037089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029967430", 
          "https://doi.org/10.1007/bf03037089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030271461", 
          "https://doi.org/10.1007/bf00117105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/360762.360817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034337826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-200-7.50091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046462056"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "Relative least general generalization proposed by Plotkin, is widely used for generalizing first-order clauses in Inductive Logic Programming, and this paper describes an extension of Plotkin\u2019s work to allow various computation domains: Herbrand Universe, sets, numerical data, ect. The \u03d5-subsumption in Plotkin\u2019s framework is replaced by a more general constraint-based subsumption. Since this replacement is analogous to that of unification by constraint solving in Constraint Logic Programming, the resultant method can be viewed as a Constraint Logic Programming version of relative least general generalization. Constraint-based subsumption, however, leads to a search on an intractably large hypothesis space. We therefore providemeta-level constraints that are used as semantic bias on the hypothesis language. The constraintsfunctional dependency andmonotonicity are introduced by analyzing clausal relationships. Finally, the advantage of the proposed method is demonstrated through a simple layout problem, where geometric constraints used in space planning tasks are produced automatically.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf03037230", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Constrained relative least general generalization for Inducing Constraint Logic Programs", 
    "pagination": "335-368", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "628e64078d9dae2e34824914f7bdd00f533bf76b940797c81088ad5318fb6b6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03037230"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020684666"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03037230", 
      "https://app.dimensions.ai/details/publication/pub.1020684666"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF03037230"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03037230'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03037230'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03037230'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03037230'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03037230 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N9e1aaf742e504d009836ae9d7246d655
4 schema:citation sg:pub.10.1007/bf00117105
5 sg:pub.10.1007/bf03037089
6 sg:pub.10.1007/bf03037187
7 https://doi.org/10.1016/0005-1098(78)90005-5
8 https://doi.org/10.1016/0890-5401(89)90010-2
9 https://doi.org/10.1016/b978-1-55860-200-7.50091-x
10 https://doi.org/10.1145/181668.181671
11 https://doi.org/10.1145/360762.360817
12 https://doi.org/10.1145/41625.41635
13 schema:datePublished 1995-12
14 schema:datePublishedReg 1995-12-01
15 schema:description Relative least general generalization proposed by Plotkin, is widely used for generalizing first-order clauses in Inductive Logic Programming, and this paper describes an extension of Plotkin’s work to allow various computation domains: Herbrand Universe, sets, numerical data, ect. The ϕ-subsumption in Plotkin’s framework is replaced by a more general constraint-based subsumption. Since this replacement is analogous to that of unification by constraint solving in Constraint Logic Programming, the resultant method can be viewed as a Constraint Logic Programming version of relative least general generalization. Constraint-based subsumption, however, leads to a search on an intractably large hypothesis space. We therefore providemeta-level constraints that are used as semantic bias on the hypothesis language. The constraintsfunctional dependency andmonotonicity are introduced by analyzing clausal relationships. Finally, the advantage of the proposed method is demonstrated through a simple layout problem, where geometric constraints used in space planning tasks are produced automatically.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N49743b8b4b04429a973e2fcd49e44273
20 Nb10ab53918c34233b31a7175b2b8044b
21 sg:journal.1053619
22 schema:name Constrained relative least general generalization for Inducing Constraint Logic Programs
23 schema:pagination 335-368
24 schema:productId N0b36af3f728a4632ad6280776d75b4a5
25 N3a7e10f7c31344daac21158ff2ceae34
26 Nb4190716c3ef489bab39c3aa0b5e83c6
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684666
28 https://doi.org/10.1007/bf03037230
29 schema:sdDatePublished 2019-04-11T09:13
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N89d58fdb3d364b2494bfb0b81ccc5f84
32 schema:url http://link.springer.com/10.1007%2FBF03037230
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0b36af3f728a4632ad6280776d75b4a5 schema:name dimensions_id
37 schema:value pub.1020684666
38 rdf:type schema:PropertyValue
39 N3a7e10f7c31344daac21158ff2ceae34 schema:name readcube_id
40 schema:value 628e64078d9dae2e34824914f7bdd00f533bf76b940797c81088ad5318fb6b6b
41 rdf:type schema:PropertyValue
42 N49743b8b4b04429a973e2fcd49e44273 schema:issueNumber 3-4
43 rdf:type schema:PublicationIssue
44 N89d58fdb3d364b2494bfb0b81ccc5f84 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N9e1aaf742e504d009836ae9d7246d655 rdf:first sg:person.016572641111.45
47 rdf:rest Na6c64571cef445d39863427ca210ac86
48 Na6c64571cef445d39863427ca210ac86 rdf:first sg:person.012070407311.05
49 rdf:rest rdf:nil
50 Nb10ab53918c34233b31a7175b2b8044b schema:volumeNumber 13
51 rdf:type schema:PublicationVolume
52 Nb4190716c3ef489bab39c3aa0b5e83c6 schema:name doi
53 schema:value 10.1007/bf03037230
54 rdf:type schema:PropertyValue
55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
56 schema:name Information and Computing Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
59 schema:name Computer Software
60 rdf:type schema:DefinedTerm
61 sg:journal.1053619 schema:issn 0288-3635
62 1882-7055
63 schema:name New Generation Computing
64 rdf:type schema:Periodical
65 sg:person.012070407311.05 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
66 schema:familyName Ohwada
67 schema:givenName Hayato
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070407311.05
69 rdf:type schema:Person
70 sg:person.016572641111.45 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
71 schema:familyName Mizoguchi
72 schema:givenName Fumio
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572641111.45
74 rdf:type schema:Person
75 sg:pub.10.1007/bf00117105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030271461
76 https://doi.org/10.1007/bf00117105
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf03037089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029967430
79 https://doi.org/10.1007/bf03037089
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf03037187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011890293
82 https://doi.org/10.1007/bf03037187
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0890-5401(89)90010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017419784
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/b978-1-55860-200-7.50091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046462056
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1145/181668.181671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001564613
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1145/360762.360817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034337826
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1145/41625.41635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026286480
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
97 schema:name Science University of Tokyo, Noda, 278, Chiba, Japan
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...