Nuclear geometry and nuclear fragments in relativistic nucleus-nucleus collisions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

F. H. Liu, Yu. A. Panebratsev

ABSTRACT

The nuclear geometry including the volumes and surface areas of the participant and the spectator in relativistic nucleus-nucleus collisions are calculated. The analyses of the transverse energy distributions show that the calculated results by using the nuclear geometry picture are in good agreement with the experimental data. There is no obvious difference between the Woods-Saxon shape and the even one of nucleon number density distribution in studying the transverse energy distribution. The charge and multiplicity distributions of projectile fragments produced in relativistic nucleus-nucleus collisions have been analysed by a two-source emission picture. A Monte Carlo partition method is used to simulate the production of projectile fragments in nuclear diffractive excitation and electromagnetic dissociation. We have studied the charge distributions of projectile fragments in the case of including and excluding the heaviest fragment, the charge distribution of the heaviest fragment, the multiplicity distributions of projectile H and He fragments and all fragments excluding the heaviest one, as well as the correlation between the heaviest fragment charge and fragments multiplicity. The calculated results are in agreement with the experimental data of sulphur fragmentation at the highest energy per nucleon in the present accelerator energy region. More... »

PAGES

1143-1159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf03035918

DOI

http://dx.doi.org/10.1007/bf03035918

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025853968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Shanxi Teachers University, 041004, Linfen, Shanxi, PRC", 
          "id": "http://www.grid.ac/institutes/grid.510766.3", 
          "name": [
            "Department of Physics, Shanxi Teachers University, 041004, Linfen, Shanxi, PRC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "F. H.", 
        "id": "sg:person.011417714651.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417714651.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of High Energies, Joint Institute for Nuclear Research, 141980, Dubna, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.33762.33", 
          "name": [
            "Laboratory of High Energies, Joint Institute for Nuclear Research, 141980, Dubna, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panebratsev", 
        "givenName": "Yu. A.", 
        "id": "sg:person.0741063223.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741063223.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01546951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049073897", 
          "https://doi.org/10.1007/bf01546951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01565131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030269850", 
          "https://doi.org/10.1007/bf01565131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008123874", 
          "https://doi.org/10.1007/bf02790320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01560341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033100334", 
          "https://doi.org/10.1007/bf01560341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02731022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007944222", 
          "https://doi.org/10.1007/bf02731022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02780686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012525139", 
          "https://doi.org/10.1007/bf02780686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02816732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002196587", 
          "https://doi.org/10.1007/bf02816732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "The nuclear geometry including the volumes and surface areas of the participant and the spectator in relativistic nucleus-nucleus collisions are calculated. The analyses of the transverse energy distributions show that the calculated results by using the nuclear geometry picture are in good agreement with the experimental data. There is no obvious difference between the Woods-Saxon shape and the even one of nucleon number density distribution in studying the transverse energy distribution. The charge and multiplicity distributions of projectile fragments produced in relativistic nucleus-nucleus collisions have been analysed by a two-source emission picture. A Monte Carlo partition method is used to simulate the production of projectile fragments in nuclear diffractive excitation and electromagnetic dissociation. We have studied the charge distributions of projectile fragments in the case of including and excluding the heaviest fragment, the charge distribution of the heaviest fragment, the multiplicity distributions of projectile H and He fragments and all fragments excluding the heaviest one, as well as the correlation between the heaviest fragment charge and fragments multiplicity. The calculated results are in agreement with the experimental data of sulphur fragmentation at the highest energy per nucleon in the present accelerator energy region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf03035918", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336107", 
        "issn": [
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1971-1996)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "relativistic nucleus-nucleus collisions", 
      "nucleus-nucleus collisions", 
      "transverse energy distribution", 
      "projectile fragments", 
      "heavy fragments", 
      "energy distribution", 
      "nuclear geometry", 
      "multiplicity distributions", 
      "Woods-Saxon shape", 
      "accelerator energy region", 
      "charge distribution", 
      "number density distribution", 
      "electromagnetic dissociation", 
      "nuclear diffractive excitation", 
      "sulphur fragmentation", 
      "energy region", 
      "high energy", 
      "fragment charge", 
      "fragment multiplicity", 
      "experimental data", 
      "diffractive excitation", 
      "nuclear fragments", 
      "collisions", 
      "density distribution", 
      "good agreement", 
      "nucleon", 
      "charge", 
      "excitation", 
      "agreement", 
      "energy", 
      "geometry", 
      "distribution", 
      "picture", 
      "dissociation", 
      "multiplicity", 
      "shape", 
      "fragmentation", 
      "region", 
      "fragments", 
      "results", 
      "spectators", 
      "correlation", 
      "data", 
      "method", 
      "surface area", 
      "volume", 
      "obvious differences", 
      "cases", 
      "partition method", 
      "production", 
      "analysis", 
      "differences", 
      "area", 
      "participants", 
      "nuclear geometry picture", 
      "geometry picture", 
      "nucleon number density distribution", 
      "two-source emission picture", 
      "emission picture", 
      "Monte Carlo partition method", 
      "Carlo partition method", 
      "projectile H", 
      "heaviest fragment charge", 
      "present accelerator energy region"
    ], 
    "name": "Nuclear geometry and nuclear fragments in relativistic nucleus-nucleus collisions", 
    "pagination": "1143-1159", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025853968"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf03035918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf03035918", 
      "https://app.dimensions.ai/details/publication/pub.1025853968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_330.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf03035918"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf03035918'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf03035918'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf03035918'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf03035918'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      22 PREDICATES      97 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf03035918 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N13de3f3512134bb6b64a82caf622cb5c
4 schema:citation sg:pub.10.1007/bf01546951
5 sg:pub.10.1007/bf01560341
6 sg:pub.10.1007/bf01565131
7 sg:pub.10.1007/bf02731022
8 sg:pub.10.1007/bf02780686
9 sg:pub.10.1007/bf02790320
10 sg:pub.10.1007/bf02816732
11 schema:datePublished 1999-10
12 schema:datePublishedReg 1999-10-01
13 schema:description The nuclear geometry including the volumes and surface areas of the participant and the spectator in relativistic nucleus-nucleus collisions are calculated. The analyses of the transverse energy distributions show that the calculated results by using the nuclear geometry picture are in good agreement with the experimental data. There is no obvious difference between the Woods-Saxon shape and the even one of nucleon number density distribution in studying the transverse energy distribution. The charge and multiplicity distributions of projectile fragments produced in relativistic nucleus-nucleus collisions have been analysed by a two-source emission picture. A Monte Carlo partition method is used to simulate the production of projectile fragments in nuclear diffractive excitation and electromagnetic dissociation. We have studied the charge distributions of projectile fragments in the case of including and excluding the heaviest fragment, the charge distribution of the heaviest fragment, the multiplicity distributions of projectile H and He fragments and all fragments excluding the heaviest one, as well as the correlation between the heaviest fragment charge and fragments multiplicity. The calculated results are in agreement with the experimental data of sulphur fragmentation at the highest energy per nucleon in the present accelerator energy region.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N458a0ce899a544898d507c9e00b780f3
18 N622ab43ecc0a41d3b5cb7d03993b360a
19 sg:journal.1336107
20 schema:keywords Carlo partition method
21 Monte Carlo partition method
22 Woods-Saxon shape
23 accelerator energy region
24 agreement
25 analysis
26 area
27 cases
28 charge
29 charge distribution
30 collisions
31 correlation
32 data
33 density distribution
34 differences
35 diffractive excitation
36 dissociation
37 distribution
38 electromagnetic dissociation
39 emission picture
40 energy
41 energy distribution
42 energy region
43 excitation
44 experimental data
45 fragment charge
46 fragment multiplicity
47 fragmentation
48 fragments
49 geometry
50 geometry picture
51 good agreement
52 heaviest fragment charge
53 heavy fragments
54 high energy
55 method
56 multiplicity
57 multiplicity distributions
58 nuclear diffractive excitation
59 nuclear fragments
60 nuclear geometry
61 nuclear geometry picture
62 nucleon
63 nucleon number density distribution
64 nucleus-nucleus collisions
65 number density distribution
66 obvious differences
67 participants
68 partition method
69 picture
70 present accelerator energy region
71 production
72 projectile H
73 projectile fragments
74 region
75 relativistic nucleus-nucleus collisions
76 results
77 shape
78 spectators
79 sulphur fragmentation
80 surface area
81 transverse energy distribution
82 two-source emission picture
83 volume
84 schema:name Nuclear geometry and nuclear fragments in relativistic nucleus-nucleus collisions
85 schema:pagination 1143-1159
86 schema:productId N0b9dc365377a4ef6b4c3e199f1e85301
87 Nf6f7c116132049a68b65480779cd81dd
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025853968
89 https://doi.org/10.1007/bf03035918
90 schema:sdDatePublished 2022-01-01T18:10
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N12e04afed7c4483da0a340ef52186cf8
93 schema:url https://doi.org/10.1007/bf03035918
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0b9dc365377a4ef6b4c3e199f1e85301 schema:name dimensions_id
98 schema:value pub.1025853968
99 rdf:type schema:PropertyValue
100 N12e04afed7c4483da0a340ef52186cf8 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N13de3f3512134bb6b64a82caf622cb5c rdf:first sg:person.011417714651.29
103 rdf:rest Nf0e28f9cc36443dc877e7cb309474ee3
104 N458a0ce899a544898d507c9e00b780f3 schema:volumeNumber 112
105 rdf:type schema:PublicationVolume
106 N622ab43ecc0a41d3b5cb7d03993b360a schema:issueNumber 10
107 rdf:type schema:PublicationIssue
108 Nf0e28f9cc36443dc877e7cb309474ee3 rdf:first sg:person.0741063223.15
109 rdf:rest rdf:nil
110 Nf6f7c116132049a68b65480779cd81dd schema:name doi
111 schema:value 10.1007/bf03035918
112 rdf:type schema:PropertyValue
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 sg:journal.1336107 schema:issn 1826-9869
120 schema:name Il Nuovo Cimento A (1971-1996)
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.011417714651.29 schema:affiliation grid-institutes:grid.510766.3
124 schema:familyName Liu
125 schema:givenName F. H.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417714651.29
127 rdf:type schema:Person
128 sg:person.0741063223.15 schema:affiliation grid-institutes:grid.33762.33
129 schema:familyName Panebratsev
130 schema:givenName Yu. A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741063223.15
132 rdf:type schema:Person
133 sg:pub.10.1007/bf01546951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073897
134 https://doi.org/10.1007/bf01546951
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf01560341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033100334
137 https://doi.org/10.1007/bf01560341
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf01565131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030269850
140 https://doi.org/10.1007/bf01565131
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02731022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007944222
143 https://doi.org/10.1007/bf02731022
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf02780686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012525139
146 https://doi.org/10.1007/bf02780686
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf02790320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008123874
149 https://doi.org/10.1007/bf02790320
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02816732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002196587
152 https://doi.org/10.1007/bf02816732
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.33762.33 schema:alternateName Laboratory of High Energies, Joint Institute for Nuclear Research, 141980, Dubna, Moscow, Russia
155 schema:name Laboratory of High Energies, Joint Institute for Nuclear Research, 141980, Dubna, Moscow, Russia
156 rdf:type schema:Organization
157 grid-institutes:grid.510766.3 schema:alternateName Department of Physics, Shanxi Teachers University, 041004, Linfen, Shanxi, PRC
158 schema:name Department of Physics, Shanxi Teachers University, 041004, Linfen, Shanxi, PRC
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...