Estimation of99mTc-MAG3 clearance by single-sample methods and camera-based methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Yusuke Inoue, Kohki Yoshikawa, Ikuo Yokoyama, Kuni Ohtomo

ABSTRACT

We compared single-sample methods, proposed by Russell et al. and Bubeck et al., and camera-based methods in calculating 99mTc-MAG3 clearance, and determined camera-based methods that provide estimates comparable to those measured by the Russell method. Twenty-one patients underwent 99mTc-MAG3 renal scintigraphy, and clearance was measured by the Russell method and Bubeck method. Various renogram parameters were determined based on the slope of the renogram and area under the renogram, and correlated with the clearance measured by the Russell method. Camera-based clearance was calculated with the obtained regression equations and with equations determined previously using the Bubeck method as a standard. The Bubeck method provided lower measures than the Russell method in high renal function. Clearance measured by the Russell method was well correlated with renogram parameters, and clearance calculated with the obtained regression equation was comparable to that measured by the Russell method. When camera-based clearance was predicted with the previous equation, it was lower than the result obtained by the Russell method in high function. In conclusion, there are systematic differences in 99mTc-MAG3 clearance calculated by different methods. The camera-based methods obtained in this study appear to facilitate comparison of results obtained by the Russell method and camera-based method. More... »

PAGES

329-332

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02988691

DOI

http://dx.doi.org/10.1007/bf02988691

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002722595

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11108160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Function Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Clearance Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radioisotope Renography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium Tc 99m Mertiatide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshikawa", 
        "givenName": "Kohki", 
        "id": "sg:person.011305211022.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Second Department of Internal Medicine, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokoyama", 
        "givenName": "Ikuo", 
        "id": "sg:person.01355412055.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355412055.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtomo", 
        "givenName": "Kuni", 
        "id": "sg:person.01152022531.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/00006231-199308000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026568501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199308000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026568501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00185857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042050124", 
          "https://doi.org/10.1007/bf00185857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3476(78)80601-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050068687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074454647", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074490705", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082453744", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082794952", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082852653", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082910895", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082997736", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.204.1.9205222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083110189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083129289", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083356470", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "We compared single-sample methods, proposed by Russell et al. and Bubeck et al., and camera-based methods in calculating 99mTc-MAG3 clearance, and determined camera-based methods that provide estimates comparable to those measured by the Russell method. Twenty-one patients underwent 99mTc-MAG3 renal scintigraphy, and clearance was measured by the Russell method and Bubeck method. Various renogram parameters were determined based on the slope of the renogram and area under the renogram, and correlated with the clearance measured by the Russell method. Camera-based clearance was calculated with the obtained regression equations and with equations determined previously using the Bubeck method as a standard. The Bubeck method provided lower measures than the Russell method in high renal function. Clearance measured by the Russell method was well correlated with renogram parameters, and clearance calculated with the obtained regression equation was comparable to that measured by the Russell method. When camera-based clearance was predicted with the previous equation, it was lower than the result obtained by the Russell method in high function. In conclusion, there are systematic differences in 99mTc-MAG3 clearance calculated by different methods. The camera-based methods obtained in this study appear to facilitate comparison of results obtained by the Russell method and camera-based method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02988691", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Estimation of99mTc-MAG3 clearance by single-sample methods and camera-based methods", 
    "pagination": "329-332", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0cf6b70fe056b42c051ee80e8d3c39a7c7200508c72cdbd94ade653be075e0fc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11108160"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02988691"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002722595"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02988691", 
      "https://app.dimensions.ai/details/publication/pub.1002722595"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02988691"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02988691'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02988691'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02988691'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02988691'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      57 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02988691 schema:about N18eeaf656ffc48089f5d25f1478ab6ee
2 N1a934558268c4eb0bd66214698ee71f3
3 N1ac948e31da94439a6ed24af2ddf784e
4 N1edfb72cbc494cb787a28341cb33a345
5 N3f90ce60c73e41f3807b5c908aebdb0d
6 N51ccf2f56552454c89031a9e87aa5047
7 N52f03eec20494a0a9f78df816fd15a42
8 N59cbfbcf27af4b31bc225ae428fcc1f3
9 N7c297a41fbbc454aa6335a44cf753cf2
10 N81c8ebf93c1d49dda56768c8ba46e86e
11 N9aa09ff6b35544fc91622b1eea4d34f2
12 N9eefd785a4134db5b3d18ff11c3ea0fd
13 Nab7dcb770bff4600a9c35e4a74ab53c7
14 Nb9fafeee786d486e8d449fca82d87584
15 Nf33b4f43ebb9450ab8589cbca8dce1cb
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author Nd7f2d55a13394ec390b18a31095b214c
19 schema:citation sg:pub.10.1007/bf00185857
20 https://app.dimensions.ai/details/publication/pub.1074454647
21 https://app.dimensions.ai/details/publication/pub.1074490705
22 https://app.dimensions.ai/details/publication/pub.1082453744
23 https://app.dimensions.ai/details/publication/pub.1082794952
24 https://app.dimensions.ai/details/publication/pub.1082852653
25 https://app.dimensions.ai/details/publication/pub.1082910895
26 https://app.dimensions.ai/details/publication/pub.1082997736
27 https://app.dimensions.ai/details/publication/pub.1083129289
28 https://app.dimensions.ai/details/publication/pub.1083356470
29 https://doi.org/10.1016/s0022-3476(78)80601-5
30 https://doi.org/10.1097/00006231-199308000-00004
31 https://doi.org/10.1148/radiology.204.1.9205222
32 schema:datePublished 2000-10
33 schema:datePublishedReg 2000-10-01
34 schema:description We compared single-sample methods, proposed by Russell et al. and Bubeck et al., and camera-based methods in calculating 99mTc-MAG3 clearance, and determined camera-based methods that provide estimates comparable to those measured by the Russell method. Twenty-one patients underwent 99mTc-MAG3 renal scintigraphy, and clearance was measured by the Russell method and Bubeck method. Various renogram parameters were determined based on the slope of the renogram and area under the renogram, and correlated with the clearance measured by the Russell method. Camera-based clearance was calculated with the obtained regression equations and with equations determined previously using the Bubeck method as a standard. The Bubeck method provided lower measures than the Russell method in high renal function. Clearance measured by the Russell method was well correlated with renogram parameters, and clearance calculated with the obtained regression equation was comparable to that measured by the Russell method. When camera-based clearance was predicted with the previous equation, it was lower than the result obtained by the Russell method in high function. In conclusion, there are systematic differences in 99mTc-MAG3 clearance calculated by different methods. The camera-based methods obtained in this study appear to facilitate comparison of results obtained by the Russell method and camera-based method.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N547cba01024d4fcc9db9ef5eeb909540
39 Nd5344f543c3e468caa7e8c769ffea14f
40 sg:journal.1099601
41 schema:name Estimation of99mTc-MAG3 clearance by single-sample methods and camera-based methods
42 schema:pagination 329-332
43 schema:productId N51595b524b884baa9086ef04c21f87ed
44 N946ba35f711f46fca50c80efff575943
45 Nb9608b321e724160809dbcd9deb244c3
46 Nc45c2653592f48ceac07cc5f7997a09b
47 Ne176ad0566484982ad549ec89b144007
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002722595
49 https://doi.org/10.1007/bf02988691
50 schema:sdDatePublished 2019-04-11T14:28
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf1db9bcee96340a1a0069fcfa5c9a410
53 schema:url http://link.springer.com/10.1007%2FBF02988691
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N03323e29e4cd4a3fab0bbdc9ae550fba rdf:first sg:person.01355412055.69
58 rdf:rest Ne356731fba7d4a4cbe704665089a883e
59 N18eeaf656ffc48089f5d25f1478ab6ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Humans
61 rdf:type schema:DefinedTerm
62 N1a934558268c4eb0bd66214698ee71f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Female
64 rdf:type schema:DefinedTerm
65 N1ac948e31da94439a6ed24af2ddf784e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Metabolic Clearance Rate
67 rdf:type schema:DefinedTerm
68 N1edfb72cbc494cb787a28341cb33a345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Kidney Function Tests
70 rdf:type schema:DefinedTerm
71 N3f90ce60c73e41f3807b5c908aebdb0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Technetium Tc 99m Mertiatide
73 rdf:type schema:DefinedTerm
74 N51595b524b884baa9086ef04c21f87ed schema:name nlm_unique_id
75 schema:value 8913398
76 rdf:type schema:PropertyValue
77 N51ccf2f56552454c89031a9e87aa5047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Calibration
79 rdf:type schema:DefinedTerm
80 N52f03eec20494a0a9f78df816fd15a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Regression Analysis
82 rdf:type schema:DefinedTerm
83 N547cba01024d4fcc9db9ef5eeb909540 schema:volumeNumber 14
84 rdf:type schema:PublicationVolume
85 N59cbfbcf27af4b31bc225ae428fcc1f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Kidney Diseases
87 rdf:type schema:DefinedTerm
88 N7c297a41fbbc454aa6335a44cf753cf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Aged
90 rdf:type schema:DefinedTerm
91 N81c8ebf93c1d49dda56768c8ba46e86e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Radioisotope Renography
93 rdf:type schema:DefinedTerm
94 N946ba35f711f46fca50c80efff575943 schema:name readcube_id
95 schema:value 0cf6b70fe056b42c051ee80e8d3c39a7c7200508c72cdbd94ade653be075e0fc
96 rdf:type schema:PropertyValue
97 N9aa09ff6b35544fc91622b1eea4d34f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Aged, 80 and over
99 rdf:type schema:DefinedTerm
100 N9eefd785a4134db5b3d18ff11c3ea0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Radiopharmaceuticals
102 rdf:type schema:DefinedTerm
103 Nab7dcb770bff4600a9c35e4a74ab53c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Middle Aged
105 rdf:type schema:DefinedTerm
106 Nb9608b321e724160809dbcd9deb244c3 schema:name pubmed_id
107 schema:value 11108160
108 rdf:type schema:PropertyValue
109 Nb9fafeee786d486e8d449fca82d87584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Male
111 rdf:type schema:DefinedTerm
112 Nc45c2653592f48ceac07cc5f7997a09b schema:name dimensions_id
113 schema:value pub.1002722595
114 rdf:type schema:PropertyValue
115 Nd5344f543c3e468caa7e8c769ffea14f schema:issueNumber 5
116 rdf:type schema:PublicationIssue
117 Nd74d30d6c22f4ac98e502b0a0cc84878 rdf:first sg:person.011305211022.80
118 rdf:rest N03323e29e4cd4a3fab0bbdc9ae550fba
119 Nd7f2d55a13394ec390b18a31095b214c rdf:first sg:person.010476276272.43
120 rdf:rest Nd74d30d6c22f4ac98e502b0a0cc84878
121 Ne176ad0566484982ad549ec89b144007 schema:name doi
122 schema:value 10.1007/bf02988691
123 rdf:type schema:PropertyValue
124 Ne356731fba7d4a4cbe704665089a883e rdf:first sg:person.01152022531.08
125 rdf:rest rdf:nil
126 Nf1db9bcee96340a1a0069fcfa5c9a410 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nf33b4f43ebb9450ab8589cbca8dce1cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adult
130 rdf:type schema:DefinedTerm
131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
132 schema:name Information and Computing Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
135 schema:name Artificial Intelligence and Image Processing
136 rdf:type schema:DefinedTerm
137 sg:journal.1099601 schema:issn 0914-7187
138 1864-6433
139 schema:name Annals of Nuclear Medicine
140 rdf:type schema:Periodical
141 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
142 schema:familyName Inoue
143 schema:givenName Yusuke
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
145 rdf:type schema:Person
146 sg:person.011305211022.80 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
147 schema:familyName Yoshikawa
148 schema:givenName Kohki
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80
150 rdf:type schema:Person
151 sg:person.01152022531.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
152 schema:familyName Ohtomo
153 schema:givenName Kuni
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08
155 rdf:type schema:Person
156 sg:person.01355412055.69 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
157 schema:familyName Yokoyama
158 schema:givenName Ikuo
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355412055.69
160 rdf:type schema:Person
161 sg:pub.10.1007/bf00185857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042050124
162 https://doi.org/10.1007/bf00185857
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1074454647 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1074490705 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1082453744 schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1082794952 schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1082852653 schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1082910895 schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1082997736 schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1083129289 schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1083356470 schema:CreativeWork
173 https://doi.org/10.1016/s0022-3476(78)80601-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050068687
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/00006231-199308000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026568501
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1148/radiology.204.1.9205222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083110189
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
180 schema:name Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
181 Department of Radiology, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
182 Second Department of Internal Medicine, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...