Can germplasm resources be used to increase the ascorbic acid content of stored potatoes? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

Corinne S. Davies, Michael J. Ottman, Stanley J. Peloquin

ABSTRACT

Freshly harvested potato tubers contain up to 50 mg/100g ascorbic acid (AA), but levels decline rapidly during cold storage. Genetic alterations to boost the AA content of stored tubers would contribute to human nutrition and might improve tuber resistance to oxidative damage during chilling. While studying the breeding potential ofSolanum phureja germplasm, we identified a 24-chromosome Phureja-haploid Tuberosum hybrid (clone I, USW5295.7) that retained a twofold higher content of tuber AA than neighboring clones after storage at 5 C. Clone I produces 2n-pollen through a mechanism genetically equivalent to first-division restitution (FDR), which transmits much of the nonadditive genetic variance for tuber yield. We now report a survey of clone I progeny showing significant family and ploidy effects on tuber AA levels during cold storage, consistent with the transmission of information for higher AA by FDR 2n-pollen. These results encourage further study of 2n-gametes and wild species germplasm to breed for increased tuber AA. More... »

PAGES

295-299

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02986362

DOI

http://dx.doi.org/10.1007/bf02986362

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038259497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Molecular and Cellular Biology, University of Arizona, 85721, Tucson, AZ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davies", 
        "givenName": "Corinne S.", 
        "id": "sg:person.013561704471.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561704471.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Plant Sciences, University of Arizona, 85721, Tucson, AZ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottman", 
        "givenName": "Michael J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Horticulture, Plant Sciences, University of Wisconsin, 53706-1590, Madison, Wisconsin"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peloquin", 
        "givenName": "Stanley J.", 
        "id": "sg:person.01156565073.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156565073.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00222446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000907508", 
          "https://doi.org/10.1007/bf00222446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00220864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005308029", 
          "https://doi.org/10.1007/bf00220864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740040805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006734737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470650110.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009030784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5266(00)80070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013911018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.1950.tb05140.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014220856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014692806", 
          "https://doi.org/10.1038/30728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.1962.tb00110.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017038536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.4.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019813173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02853909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020428086", 
          "https://doi.org/10.1007/bf02853909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02853909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020428086", 
          "https://doi.org/10.1007/bf02853909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.171318198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025048791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.1957.tb16980.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039899010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.1975.tb02216.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045358882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02862933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048780598", 
          "https://doi.org/10.1007/bf02862933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02862933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048780598", 
          "https://doi.org/10.1007/bf02862933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.5000640108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049073896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf9910279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055931833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf9910279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055931833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5396.2098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5451.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074556858", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "Freshly harvested potato tubers contain up to 50 mg/100g ascorbic acid (AA), but levels decline rapidly during cold storage. Genetic alterations to boost the AA content of stored tubers would contribute to human nutrition and might improve tuber resistance to oxidative damage during chilling. While studying the breeding potential ofSolanum phureja germplasm, we identified a 24-chromosome Phureja-haploid Tuberosum hybrid (clone I, USW5295.7) that retained a twofold higher content of tuber AA than neighboring clones after storage at 5 C. Clone I produces 2n-pollen through a mechanism genetically equivalent to first-division restitution (FDR), which transmits much of the nonadditive genetic variance for tuber yield. We now report a survey of clone I progeny showing significant family and ploidy effects on tuber AA levels during cold storage, consistent with the transmission of information for higher AA by FDR 2n-pollen. These results encourage further study of 2n-gametes and wild species germplasm to breed for increased tuber AA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02986362", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026092", 
        "issn": [
          "1099-209X", 
          "1874-9380"
        ], 
        "name": "American Journal of Potato Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "Can germplasm resources be used to increase the ascorbic acid content of stored potatoes?", 
    "pagination": "295-299", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b64167af951316c3f48107a287c5642e43558c9e7bd21e601ff4035f98e896b2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02986362"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038259497"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02986362", 
      "https://app.dimensions.ai/details/publication/pub.1038259497"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13109_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02986362"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02986362'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02986362'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02986362'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02986362'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02986362 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N7867cede0cfe477e83b1b66b06d7f464
4 schema:citation sg:pub.10.1007/bf00220864
5 sg:pub.10.1007/bf00222446
6 sg:pub.10.1007/bf02853909
7 sg:pub.10.1007/bf02862933
8 sg:pub.10.1038/30728
9 https://app.dimensions.ai/details/publication/pub.1074556858
10 https://doi.org/10.1002/9780470650110.ch2
11 https://doi.org/10.1002/jctb.5000640108
12 https://doi.org/10.1002/jsfa.2740040805
13 https://doi.org/10.1016/s1369-5266(00)80070-9
14 https://doi.org/10.1021/jf9910279
15 https://doi.org/10.1073/pnas.171318198
16 https://doi.org/10.1073/pnas.96.4.1773
17 https://doi.org/10.1111/j.1365-2621.1957.tb16980.x
18 https://doi.org/10.1111/j.1365-2621.1962.tb00110.x
19 https://doi.org/10.1111/j.1365-2621.1975.tb02216.x
20 https://doi.org/10.1111/j.1469-8137.1950.tb05140.x
21 https://doi.org/10.1126/science.282.5396.2098
22 https://doi.org/10.1126/science.287.5451.303
23 schema:datePublished 2002-07
24 schema:datePublishedReg 2002-07-01
25 schema:description Freshly harvested potato tubers contain up to 50 mg/100g ascorbic acid (AA), but levels decline rapidly during cold storage. Genetic alterations to boost the AA content of stored tubers would contribute to human nutrition and might improve tuber resistance to oxidative damage during chilling. While studying the breeding potential ofSolanum phureja germplasm, we identified a 24-chromosome Phureja-haploid Tuberosum hybrid (clone I, USW5295.7) that retained a twofold higher content of tuber AA than neighboring clones after storage at 5 C. Clone I produces 2n-pollen through a mechanism genetically equivalent to first-division restitution (FDR), which transmits much of the nonadditive genetic variance for tuber yield. We now report a survey of clone I progeny showing significant family and ploidy effects on tuber AA levels during cold storage, consistent with the transmission of information for higher AA by FDR 2n-pollen. These results encourage further study of 2n-gametes and wild species germplasm to breed for increased tuber AA.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N1a921c7ed6e9438e87c3b908ec9d5818
30 Nfe86db81ab57476d8075a1a4f7f530d1
31 sg:journal.1026092
32 schema:name Can germplasm resources be used to increase the ascorbic acid content of stored potatoes?
33 schema:pagination 295-299
34 schema:productId Nb005d65acc084dbdb4e8da5c90b269db
35 Nc9f391fc9e0b43d6be057247ed475ee8
36 Nccab2fa29827476c90a4629e170ca0ac
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038259497
38 https://doi.org/10.1007/bf02986362
39 schema:sdDatePublished 2019-04-11T14:34
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ndac5bca3b1734172b0af03326714f039
42 schema:url http://link.springer.com/10.1007/BF02986362
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1a921c7ed6e9438e87c3b908ec9d5818 schema:volumeNumber 79
47 rdf:type schema:PublicationVolume
48 N1df1040f5dde4e03b798ab450ad78936 rdf:first sg:person.01156565073.47
49 rdf:rest rdf:nil
50 N3b1602a235d445b29cff542bb2b74a63 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
51 schema:familyName Ottman
52 schema:givenName Michael J.
53 rdf:type schema:Person
54 N7867cede0cfe477e83b1b66b06d7f464 rdf:first sg:person.013561704471.69
55 rdf:rest Ned8780bc44544c3f8ff8cc38d67579aa
56 Nb005d65acc084dbdb4e8da5c90b269db schema:name doi
57 schema:value 10.1007/bf02986362
58 rdf:type schema:PropertyValue
59 Nc9f391fc9e0b43d6be057247ed475ee8 schema:name dimensions_id
60 schema:value pub.1038259497
61 rdf:type schema:PropertyValue
62 Nccab2fa29827476c90a4629e170ca0ac schema:name readcube_id
63 schema:value b64167af951316c3f48107a287c5642e43558c9e7bd21e601ff4035f98e896b2
64 rdf:type schema:PropertyValue
65 Ndac5bca3b1734172b0af03326714f039 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Ned8780bc44544c3f8ff8cc38d67579aa rdf:first N3b1602a235d445b29cff542bb2b74a63
68 rdf:rest N1df1040f5dde4e03b798ab450ad78936
69 Nfe86db81ab57476d8075a1a4f7f530d1 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
72 schema:name Biological Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
75 schema:name Genetics
76 rdf:type schema:DefinedTerm
77 sg:journal.1026092 schema:issn 1099-209X
78 1874-9380
79 schema:name American Journal of Potato Research
80 rdf:type schema:Periodical
81 sg:person.01156565073.47 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
82 schema:familyName Peloquin
83 schema:givenName Stanley J.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156565073.47
85 rdf:type schema:Person
86 sg:person.013561704471.69 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
87 schema:familyName Davies
88 schema:givenName Corinne S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561704471.69
90 rdf:type schema:Person
91 sg:pub.10.1007/bf00220864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005308029
92 https://doi.org/10.1007/bf00220864
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00222446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000907508
95 https://doi.org/10.1007/bf00222446
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02853909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020428086
98 https://doi.org/10.1007/bf02853909
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02862933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048780598
101 https://doi.org/10.1007/bf02862933
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/30728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014692806
104 https://doi.org/10.1038/30728
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1074556858 schema:CreativeWork
107 https://doi.org/10.1002/9780470650110.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009030784
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/jctb.5000640108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073896
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/jsfa.2740040805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006734737
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s1369-5266(00)80070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013911018
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/jf9910279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055931833
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.171318198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025048791
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1073/pnas.96.4.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813173
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1365-2621.1957.tb16980.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039899010
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1365-2621.1962.tb00110.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017038536
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1365-2621.1975.tb02216.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045358882
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1469-8137.1950.tb05140.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014220856
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.282.5396.2098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563529
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.287.5451.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567997
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
134 schema:name Department of Molecular and Cellular Biology, University of Arizona, 85721, Tucson, AZ
135 Department of Plant Sciences, University of Arizona, 85721, Tucson, AZ
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
138 schema:name Department of Horticulture, Plant Sciences, University of Wisconsin, 53706-1590, Madison, Wisconsin
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...