Ontology type: schema:ScholarlyArticle
1960-06
AUTHORS ABSTRACTIt is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left. \begin{gathered} \Sigma _\mu = \frac{{0 \cdot 3419E}}{{\bar h}}\left( {1 + 1 \cdot 720\bar h + ...} \right) \hfill \\ \bar h = 0 \cdot 6838\sqrt {\frac{E}{{2D}}} \left( {1 + 1 \cdot 018 \sqrt {\frac{E}{{2D}}} + ...} \right) \hfill \\ \end{gathered} \right\}$$ \end{document}, where Σμ is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of “recessive” deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed. More... »
PAGES21-34
http://scigraph.springernature.com/pub.10.1007/bf02985336
DOIhttp://dx.doi.org/10.1007/bf02985336
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014217276
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Institute of Genetics, Mishima-shi, Japan",
"id": "http://www.grid.ac/institutes/grid.288127.6",
"name": [
"National Institute of Genetics, Mishima-shi, Japan"
],
"type": "Organization"
},
"familyName": "Kimura",
"givenName": "Motoo",
"id": "sg:person.073272306.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02984069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051891442",
"https://doi.org/10.1007/bf02984069"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02984716",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020793684",
"https://doi.org/10.1007/bf02984716"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/hdy.1958.21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042464866",
"https://doi.org/10.1038/hdy.1958.21"
],
"type": "CreativeWork"
}
],
"datePublished": "1960-06",
"datePublishedReg": "1960-06-01",
"description": "It is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left. \\begin{gathered} \\Sigma _\\mu = \\frac{{0 \\cdot 3419E}}{{\\bar h}}\\left( {1 + 1 \\cdot 720\\bar h + ...} \\right) \\hfill \\\\ \\bar h = 0 \\cdot 6838\\sqrt {\\frac{E}{{2D}}} \\left( {1 + 1 \\cdot 018 \\sqrt {\\frac{E}{{2D}}} + ...} \\right) \\hfill \\\\ \\end{gathered} \\right\\}$$\n\\end{document}, where \u03a3\u03bc is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of \u201crecessive\u201d deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed.",
"genre": "article",
"id": "sg:pub.10.1007/bf02985336",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1077130",
"issn": [
"0022-1333",
"0973-7731"
],
"name": "Journal of Genetics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "57"
}
],
"keywords": [
"deleterious mutant genes",
"spontaneous mutation rate",
"genetic load",
"mutation rate",
"mutant gene",
"optimum mutation rate",
"rate of substitution",
"degree of dominance",
"deleterious genes",
"partial dominance",
"mutational damage",
"genes",
"environmental conditions",
"normal allele",
"genetic damage",
"fitness",
"dominance",
"gametes",
"evolution",
"alleles",
"substitution",
"cyclical changes",
"Andes",
"damage",
"average degree",
"present results",
"pairs",
"rate",
"changes",
"generation",
"degree",
"byproducts",
"increase",
"conditions",
"implications",
"data",
"quantity",
"results",
"principles",
"relation",
"observational data",
"new theory",
"depression",
"unit increase",
"load",
"theory",
"above formula",
"formula"
],
"name": "Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load",
"pagination": "21-34",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014217276"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02985336"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02985336",
"https://app.dimensions.ai/details/publication/pub.1014217276"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_98.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02985336"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'
This table displays all metadata directly associated to this object as RDF triples.
118 TRIPLES
22 PREDICATES
77 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02985336 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N6751baa4886f4fd790dcd71e70a53fb1 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02984069 |
5 | ″ | ″ | sg:pub.10.1007/bf02984716 |
6 | ″ | ″ | sg:pub.10.1038/hdy.1958.21 |
7 | ″ | schema:datePublished | 1960-06 |
8 | ″ | schema:datePublishedReg | 1960-06-01 |
9 | ″ | schema:description | It is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left. \begin{gathered} \Sigma _\mu = \frac{{0 \cdot 3419E}}{{\bar h}}\left( {1 + 1 \cdot 720\bar h + ...} \right) \hfill \\ \bar h = 0 \cdot 6838\sqrt {\frac{E}{{2D}}} \left( {1 + 1 \cdot 018 \sqrt {\frac{E}{{2D}}} + ...} \right) \hfill \\ \end{gathered} \right\}$$ \end{document}, where Σμ is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of “recessive” deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N5bd02e63ce54454abb9338ea3f00945b |
14 | ″ | ″ | N71fd16b8e87d4efda287264b8f4cdf93 |
15 | ″ | ″ | sg:journal.1077130 |
16 | ″ | schema:keywords | Andes |
17 | ″ | ″ | above formula |
18 | ″ | ″ | alleles |
19 | ″ | ″ | average degree |
20 | ″ | ″ | byproducts |
21 | ″ | ″ | changes |
22 | ″ | ″ | conditions |
23 | ″ | ″ | cyclical changes |
24 | ″ | ″ | damage |
25 | ″ | ″ | data |
26 | ″ | ″ | degree |
27 | ″ | ″ | degree of dominance |
28 | ″ | ″ | deleterious genes |
29 | ″ | ″ | deleterious mutant genes |
30 | ″ | ″ | depression |
31 | ″ | ″ | dominance |
32 | ″ | ″ | environmental conditions |
33 | ″ | ″ | evolution |
34 | ″ | ″ | fitness |
35 | ″ | ″ | formula |
36 | ″ | ″ | gametes |
37 | ″ | ″ | generation |
38 | ″ | ″ | genes |
39 | ″ | ″ | genetic damage |
40 | ″ | ″ | genetic load |
41 | ″ | ″ | implications |
42 | ″ | ″ | increase |
43 | ″ | ″ | load |
44 | ″ | ″ | mutant gene |
45 | ″ | ″ | mutation rate |
46 | ″ | ″ | mutational damage |
47 | ″ | ″ | new theory |
48 | ″ | ″ | normal allele |
49 | ″ | ″ | observational data |
50 | ″ | ″ | optimum mutation rate |
51 | ″ | ″ | pairs |
52 | ″ | ″ | partial dominance |
53 | ″ | ″ | present results |
54 | ″ | ″ | principles |
55 | ″ | ″ | quantity |
56 | ″ | ″ | rate |
57 | ″ | ″ | rate of substitution |
58 | ″ | ″ | relation |
59 | ″ | ″ | results |
60 | ″ | ″ | spontaneous mutation rate |
61 | ″ | ″ | substitution |
62 | ″ | ″ | theory |
63 | ″ | ″ | unit increase |
64 | ″ | schema:name | Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load |
65 | ″ | schema:pagination | 21-34 |
66 | ″ | schema:productId | N8b67fbf773e84b19986edba6a537ef3d |
67 | ″ | ″ | Ncd08339303a847fe9f449fa799909c23 |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014217276 |
69 | ″ | ″ | https://doi.org/10.1007/bf02985336 |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:40 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N8d98246b49564fc0b47c9e2f2dc500c6 |
73 | ″ | schema:url | https://doi.org/10.1007/bf02985336 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N5bd02e63ce54454abb9338ea3f00945b | schema:volumeNumber | 57 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N6751baa4886f4fd790dcd71e70a53fb1 | rdf:first | sg:person.073272306.52 |
80 | ″ | rdf:rest | rdf:nil |
81 | N71fd16b8e87d4efda287264b8f4cdf93 | schema:issueNumber | 1 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | N8b67fbf773e84b19986edba6a537ef3d | schema:name | doi |
84 | ″ | schema:value | 10.1007/bf02985336 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N8d98246b49564fc0b47c9e2f2dc500c6 | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | Ncd08339303a847fe9f449fa799909c23 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1014217276 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Biological Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Genetics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:journal.1077130 | schema:issn | 0022-1333 |
98 | ″ | ″ | 0973-7731 |
99 | ″ | schema:name | Journal of Genetics |
100 | ″ | schema:publisher | Springer Nature |
101 | ″ | rdf:type | schema:Periodical |
102 | sg:person.073272306.52 | schema:affiliation | grid-institutes:grid.288127.6 |
103 | ″ | schema:familyName | Kimura |
104 | ″ | schema:givenName | Motoo |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52 |
106 | ″ | rdf:type | schema:Person |
107 | sg:pub.10.1007/bf02984069 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051891442 |
108 | ″ | ″ | https://doi.org/10.1007/bf02984069 |
109 | ″ | rdf:type | schema:CreativeWork |
110 | sg:pub.10.1007/bf02984716 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020793684 |
111 | ″ | ″ | https://doi.org/10.1007/bf02984716 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | sg:pub.10.1038/hdy.1958.21 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042464866 |
114 | ″ | ″ | https://doi.org/10.1038/hdy.1958.21 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | grid-institutes:grid.288127.6 | schema:alternateName | National Institute of Genetics, Mishima-shi, Japan |
117 | ″ | schema:name | National Institute of Genetics, Mishima-shi, Japan |
118 | ″ | rdf:type | schema:Organization |