Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1960-06

AUTHORS

Motoo Kimura

ABSTRACT

It is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left. \begin{gathered} \Sigma _\mu = \frac{{0 \cdot 3419E}}{{\bar h}}\left( {1 + 1 \cdot 720\bar h + ...} \right) \hfill \\ \bar h = 0 \cdot 6838\sqrt {\frac{E}{{2D}}} \left( {1 + 1 \cdot 018 \sqrt {\frac{E}{{2D}}} + ...} \right) \hfill \\ \end{gathered} \right\}$$ \end{document}, where Σμ is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of “recessive” deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed. More... »

PAGES

21-34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02985336

DOI

http://dx.doi.org/10.1007/bf02985336

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014217276


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Genetics, Mishima-shi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.288127.6", 
          "name": [
            "National Institute of Genetics, Mishima-shi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Motoo", 
        "id": "sg:person.073272306.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1958.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042464866", 
          "https://doi.org/10.1038/hdy.1958.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02984716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020793684", 
          "https://doi.org/10.1007/bf02984716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02984069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051891442", 
          "https://doi.org/10.1007/bf02984069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1960-06", 
    "datePublishedReg": "1960-06-01", 
    "description": "It is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left. \\begin{gathered}  \\Sigma _\\mu   = \\frac{{0 \\cdot 3419E}}{{\\bar h}}\\left( {1 + 1 \\cdot 720\\bar h + ...} \\right) \\hfill \\\\  \\bar h = 0 \\cdot 6838\\sqrt {\\frac{E}{{2D}}} \\left( {1 + 1 \\cdot 018   \\sqrt {\\frac{E}{{2D}}}  + ...} \\right) \\hfill \\\\ \\end{gathered}  \\right\\}$$\n\\end{document}, where \u03a3\u03bc is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of \u201crecessive\u201d deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02985336", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1077130", 
        "issn": [
          "0022-1333", 
          "0973-7731"
        ], 
        "name": "Journal of Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "deleterious mutant genes", 
      "spontaneous mutation rate", 
      "genetic load", 
      "mutation rate", 
      "mutant gene", 
      "rate of substitution", 
      "optimum mutation rate", 
      "deleterious genes", 
      "partial dominance", 
      "degree of dominance", 
      "genes", 
      "mutational damage", 
      "environmental conditions", 
      "genetic damage", 
      "normal allele", 
      "fitness", 
      "dominance", 
      "gametes", 
      "evolution", 
      "alleles", 
      "cyclical changes", 
      "substitution", 
      "Andes", 
      "damage", 
      "pairs", 
      "present results", 
      "average degree", 
      "rate", 
      "generation", 
      "changes", 
      "byproducts", 
      "degree", 
      "conditions", 
      "increase", 
      "implications", 
      "quantity", 
      "data", 
      "results", 
      "relation", 
      "principles", 
      "observational data", 
      "unit increase", 
      "load", 
      "new theory", 
      "depression", 
      "theory", 
      "above formula", 
      "formula", 
      "minimum genetic load", 
      "total genetic damage", 
      "horotelic evolution", 
      "\u03a3\u03bc", 
      "total mutational damage", 
      "inbreeding coefficient andE", 
      "coefficient andE"
    ], 
    "name": "Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load", 
    "pagination": "21-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014217276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02985336"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02985336", 
      "https://app.dimensions.ai/details/publication/pub.1014217276"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_98.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02985336"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02985336'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      84 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02985336 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N3b42d7287960417d90492cd88a435075
4 schema:citation sg:pub.10.1007/bf02984069
5 sg:pub.10.1007/bf02984716
6 sg:pub.10.1038/hdy.1958.21
7 schema:datePublished 1960-06
8 schema:datePublishedReg 1960-06-01
9 schema:description It is demonstrated that by introducing what may be called the principle of minimum genetic load, the spontaneous mutation rate and the average degree of dominance of deleterious mutant genes may be derived theoretically from the total genetic damage and the rate of substitution of genes in horotelic evolution. The relations connecting these quantities may be expressed by a pair of equations:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left. \begin{gathered} \Sigma _\mu = \frac{{0 \cdot 3419E}}{{\bar h}}\left( {1 + 1 \cdot 720\bar h + ...} \right) \hfill \\ \bar h = 0 \cdot 6838\sqrt {\frac{E}{{2D}}} \left( {1 + 1 \cdot 018 \sqrt {\frac{E}{{2D}}} + ...} \right) \hfill \\ \end{gathered} \right\}$$ \end{document}, where Σμ is the spontaneous mutation rate per gamete per generation,h is the average degree of dominance in fitness of deleterious mutant genes,D is the total mutational damage or approximately the rate of inbreeding depression in fitness per unit increase in the inbreeding coefficient andE is the rate of substitution of genes in horotelic evolution. The above formulae are sufficiently simple to be checked by observational data now available. The present result offers, as a byproduct, a new theory of dominance which can account for the partial dominance in fitness of the normal alleles of “recessive” deleterious genes.The implication of the principle of minimum genetic load for a cyclical change in environmental condition is also discussed.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N514e7e78566c4e2991ee928b83f2b3ec
14 N6f149f4b3c8d4b3caf7beebd61ab371b
15 sg:journal.1077130
16 schema:keywords Andes
17 above formula
18 alleles
19 average degree
20 byproducts
21 changes
22 coefficient andE
23 conditions
24 cyclical changes
25 damage
26 data
27 degree
28 degree of dominance
29 deleterious genes
30 deleterious mutant genes
31 depression
32 dominance
33 environmental conditions
34 evolution
35 fitness
36 formula
37 gametes
38 generation
39 genes
40 genetic damage
41 genetic load
42 horotelic evolution
43 implications
44 inbreeding coefficient andE
45 increase
46 load
47 minimum genetic load
48 mutant gene
49 mutation rate
50 mutational damage
51 new theory
52 normal allele
53 observational data
54 optimum mutation rate
55 pairs
56 partial dominance
57 present results
58 principles
59 quantity
60 rate
61 rate of substitution
62 relation
63 results
64 spontaneous mutation rate
65 substitution
66 theory
67 total genetic damage
68 total mutational damage
69 unit increase
70 Σμ
71 schema:name Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load
72 schema:pagination 21-34
73 schema:productId Nd27643e46f5f45cc929c4b7a62d23f00
74 Ne76396b443744373a25dbfc4459974cf
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014217276
76 https://doi.org/10.1007/bf02985336
77 schema:sdDatePublished 2022-01-01T19:03
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nf598842a90c4447a999dec0a89562e34
80 schema:url https://doi.org/10.1007/bf02985336
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N3b42d7287960417d90492cd88a435075 rdf:first sg:person.073272306.52
85 rdf:rest rdf:nil
86 N514e7e78566c4e2991ee928b83f2b3ec schema:volumeNumber 57
87 rdf:type schema:PublicationVolume
88 N6f149f4b3c8d4b3caf7beebd61ab371b schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nd27643e46f5f45cc929c4b7a62d23f00 schema:name doi
91 schema:value 10.1007/bf02985336
92 rdf:type schema:PropertyValue
93 Ne76396b443744373a25dbfc4459974cf schema:name dimensions_id
94 schema:value pub.1014217276
95 rdf:type schema:PropertyValue
96 Nf598842a90c4447a999dec0a89562e34 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
102 schema:name Genetics
103 rdf:type schema:DefinedTerm
104 sg:journal.1077130 schema:issn 0022-1333
105 0973-7731
106 schema:name Journal of Genetics
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.073272306.52 schema:affiliation grid-institutes:grid.288127.6
110 schema:familyName Kimura
111 schema:givenName Motoo
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52
113 rdf:type schema:Person
114 sg:pub.10.1007/bf02984069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051891442
115 https://doi.org/10.1007/bf02984069
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02984716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020793684
118 https://doi.org/10.1007/bf02984716
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/hdy.1958.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042464866
121 https://doi.org/10.1038/hdy.1958.21
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.288127.6 schema:alternateName National Institute of Genetics, Mishima-shi, Japan
124 schema:name National Institute of Genetics, Mishima-shi, Japan
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...