Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer’s disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

Norinari Honda, Kikuo Machida, Tohru Matsumoto, Hiroshi Matsuda, Etsuko Imabayashi, Jun Hashimoto, Makoto Hosono, Yusuke Inoue, Kiyoshi Koizumi, Shigeru Kosuda, Toshimitsu Momose, Yutaka Mori, Motoo Oshima

ABSTRACT

OBJECTIVES: Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods. METHODS: Sixteen nuclear medicine physicians independently interpreted 99mTc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the ROC curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template. RESULTS: Mean Az for visual interpretation of SPECT alone (0.679 +/- 0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778 +/- 0.060). Az for the automated diagnosis (0.883 +/- 0.037) was significantly greater than that for both modes of visual interpretation. CONCLUSIONS: 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP. More... »

PAGES

641

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02984969

DOI

http://dx.doi.org/10.1007/bf02984969

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038755160

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14971605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Saitama Medical Center, Saitama Medical School, 1981 Tsujido, Kamoda, Saitama 350-8550, Kawagoe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honda", 
        "givenName": "Norinari", 
        "id": "sg:person.01005237677.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005237677.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Saitama Medical Center, Saitama Medical School, 1981 Tsujido, Kamoda, Saitama 350-8550, Kawagoe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machida", 
        "givenName": "Kikuo", 
        "id": "sg:person.01327071542.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327071542.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Radiological Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419638.1", 
          "name": [
            "National Institute of Radiological Sciences, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Tohru", 
        "id": "sg:person.012464636742.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464636742.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuda", 
        "givenName": "Hiroshi", 
        "id": "sg:person.010015703732.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015703732.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imabayashi", 
        "givenName": "Etsuko", 
        "id": "sg:person.01113672270.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113672270.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Faculty of Medicine, Keio University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Jun", 
        "id": "sg:person.0611771144.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611771144.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kindai University", 
          "id": "https://www.grid.ac/institutes/grid.258622.9", 
          "name": [
            "Department of Radiology, Faculty of Medicine, Kinki University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosono", 
        "givenName": "Makoto", 
        "id": "sg:person.014520275124.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520275124.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Institute of Medical Science, University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Radiology, Tokyo Medical University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koizumi", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.011457476122.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457476122.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Defense Medical College", 
          "id": "https://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Radiology, National Defense Medical College, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosuda", 
        "givenName": "Shigeru", 
        "id": "sg:person.0707015400.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707015400.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Faculty of Medicine, University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Momose", 
        "givenName": "Toshimitsu", 
        "id": "sg:person.01040755345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040755345.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jikei University", 
          "id": "https://www.grid.ac/institutes/grid.411898.d", 
          "name": [
            "Department of Radiology, Jikei University School of Medicine, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Yutaka", 
        "id": "sg:person.01041722337.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041722337.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Kasukabe Hospital, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oshima", 
        "givenName": "Motoo", 
        "id": "sg:person.01275701124.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275701124.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1532-5415.1995.tb07400.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410420114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008549136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01728771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014119476", 
          "https://doi.org/10.1007/bf01728771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01728771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014119476", 
          "https://doi.org/10.1007/bf01728771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-198609000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014660919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-198609000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014660919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021548669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021548669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.34.7.939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(75)90026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-198903000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029853682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-198903000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029853682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02988596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047696517", 
          "https://doi.org/10.1007/bf02988596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02988596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047696517", 
          "https://doi.org/10.1007/bf02988596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.6.1563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064376291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.6.1563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064376291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.6.1563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064376291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074675020", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075226309", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077159693", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082509074", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082637779", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082731841", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082803307", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082813540", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.198.3.8628880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082885179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.202.3.9051035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083053377"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "OBJECTIVES: Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods.\nMETHODS: Sixteen nuclear medicine physicians independently interpreted 99mTc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the ROC curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template.\nRESULTS: Mean Az for visual interpretation of SPECT alone (0.679 +/- 0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778 +/- 0.060). Az for the automated diagnosis (0.883 +/- 0.037) was significantly greater than that for both modes of visual interpretation.\nCONCLUSIONS: 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02984969", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer\u2019s disease", 
    "pagination": "641", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b89d0ee19b6bfb63b9a0e8d45bf80b54b89a2ce915f6b835b5dfdfea20370ab8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14971605"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02984969"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038755160"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02984969", 
      "https://app.dimensions.ai/details/publication/pub.1038755160"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02984969"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02984969'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02984969'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02984969'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02984969'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      21 PREDICATES      65 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02984969 schema:about N1a0a97d201914e88a8850cd5080be4e7
2 N21f4c318af284811bf0a623ed823cb67
3 N40e96d0588fd49eeb14881d0d5a2e615
4 N420fc6329f854554b99c1c78334b89a1
5 N619aceb1834d40dabd7fecd812cf81b9
6 N625de79a2e76404b83f4cc3e656f14bc
7 N8406945962984ca7ba383fc9b647ffc1
8 Na5c611d756084f788aa10f3147749c98
9 Nae075724310743359d8d89a2b55f1345
10 Nb3d702f388084424ae61c4c3128178e9
11 Nc6960f3071e7453686988a202541c117
12 Nc91ba894cb5d4bc8b8c8e3ffd889767f
13 Nd6e84990eebf4fe69a38a783c519f6ea
14 Nd83e1e4adaf94def9459dbc50c663d11
15 Nec984c1907c14b5a8e2b5dd119a8b2e8
16 Nf90b456c13b54903ad1f6cc1952d1552
17 anzsrc-for:11
18 anzsrc-for:1109
19 schema:author N1a61196c4ec34bfcbf7e286f126ad7f4
20 schema:citation sg:pub.10.1007/bf01728771
21 sg:pub.10.1007/bf02988596
22 https://app.dimensions.ai/details/publication/pub.1074675020
23 https://app.dimensions.ai/details/publication/pub.1075226309
24 https://app.dimensions.ai/details/publication/pub.1077159693
25 https://app.dimensions.ai/details/publication/pub.1082509074
26 https://app.dimensions.ai/details/publication/pub.1082637779
27 https://app.dimensions.ai/details/publication/pub.1082731841
28 https://app.dimensions.ai/details/publication/pub.1082803307
29 https://app.dimensions.ai/details/publication/pub.1082813540
30 https://doi.org/10.1002/ana.410420114
31 https://doi.org/10.1006/nimg.2002.1208
32 https://doi.org/10.1016/0022-3956(75)90026-6
33 https://doi.org/10.1097/00004424-198609000-00009
34 https://doi.org/10.1097/00004424-198903000-00012
35 https://doi.org/10.1111/j.1532-5415.1995.tb07400.x
36 https://doi.org/10.1148/radiology.198.3.8628880
37 https://doi.org/10.1148/radiology.202.3.9051035
38 https://doi.org/10.1212/wnl.34.7.939
39 https://doi.org/10.1212/wnl.50.6.1563
40 schema:datePublished 2003-12
41 schema:datePublishedReg 2003-12-01
42 schema:description OBJECTIVES: Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods. METHODS: Sixteen nuclear medicine physicians independently interpreted 99mTc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the ROC curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template. RESULTS: Mean Az for visual interpretation of SPECT alone (0.679 +/- 0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778 +/- 0.060). Az for the automated diagnosis (0.883 +/- 0.037) was significantly greater than that for both modes of visual interpretation. CONCLUSIONS: 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N42d5fd81d57f4197b5d6fc6fa1111c69
47 Nee8ec4b77d6c43bd9e881be6c728d3ef
48 sg:journal.1099601
49 schema:name Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer’s disease
50 schema:pagination 641
51 schema:productId N422b9743b0b0480ab45f45640f2cc4ca
52 N79df78a684b647a280bcdcc6cd56a8a7
53 Na61bbbc485e04576ab3a3e1996ebfd9a
54 Nd3c41dc1b90f4980824f22bf211dfdcb
55 Nf95b3131cbb74212a65ff7be3c346929
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038755160
57 https://doi.org/10.1007/bf02984969
58 schema:sdDatePublished 2019-04-11T14:28
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N566f9b1af8f446f7bad01909f54dc162
61 schema:url http://link.springer.com/10.1007%2FBF02984969
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1a0a97d201914e88a8850cd5080be4e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Alzheimer Disease
67 rdf:type schema:DefinedTerm
68 N1a61196c4ec34bfcbf7e286f126ad7f4 rdf:first sg:person.01005237677.88
69 rdf:rest Na5d2de75188543f3bbae69b82efe8846
70 N21f4c318af284811bf0a623ed823cb67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Female
72 rdf:type schema:DefinedTerm
73 N40e96d0588fd49eeb14881d0d5a2e615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Imaging, Three-Dimensional
75 rdf:type schema:DefinedTerm
76 N420fc6329f854554b99c1c78334b89a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Image Enhancement
78 rdf:type schema:DefinedTerm
79 N422b9743b0b0480ab45f45640f2cc4ca schema:name nlm_unique_id
80 schema:value 8913398
81 rdf:type schema:PropertyValue
82 N42d5fd81d57f4197b5d6fc6fa1111c69 schema:issueNumber 8
83 rdf:type schema:PublicationIssue
84 N51b1652f90104ca9a8418914dec8d969 schema:name Department of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders, Japan
85 rdf:type schema:Organization
86 N566f9b1af8f446f7bad01909f54dc162 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N5c3219fa58da45c3a86fd3e1dcd8a416 rdf:first sg:person.011457476122.47
89 rdf:rest Nb2a4a22720864b2992be5bda248bd7a0
90 N5d0bdd62ac6a4e2ebb883ca6355b89c9 rdf:first sg:person.0611771144.21
91 rdf:rest Nb6b8abdccaa34354b7fa598062f7e7ac
92 N5d8910724fd64c94901119e48cf28ccc schema:name Department of Radiology, Saitama Medical Center, Saitama Medical School, 1981 Tsujido, Kamoda, Saitama 350-8550, Kawagoe, Japan
93 rdf:type schema:Organization
94 N619aceb1834d40dabd7fecd812cf81b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Middle Aged
96 rdf:type schema:DefinedTerm
97 N625de79a2e76404b83f4cc3e656f14bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Tomography, Emission-Computed, Single-Photon
99 rdf:type schema:DefinedTerm
100 N6b31f65a010940998dd6eb27e6c2124a rdf:first sg:person.01275701124.92
101 rdf:rest rdf:nil
102 N6e8b86e3d47b4f79aa98fd42cb88a2e8 schema:name Department of Radiology, Saitama Medical Center, Saitama Medical School, 1981 Tsujido, Kamoda, Saitama 350-8550, Kawagoe, Japan
103 rdf:type schema:Organization
104 N79df78a684b647a280bcdcc6cd56a8a7 schema:name readcube_id
105 schema:value b89d0ee19b6bfb63b9a0e8d45bf80b54b89a2ce915f6b835b5dfdfea20370ab8
106 rdf:type schema:PropertyValue
107 N8406945962984ca7ba383fc9b647ffc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Adolescent
109 rdf:type schema:DefinedTerm
110 Na5a36e677c76428a9dd32997573251f4 rdf:first sg:person.01041722337.05
111 rdf:rest N6b31f65a010940998dd6eb27e6c2124a
112 Na5c611d756084f788aa10f3147749c98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Reproducibility of Results
114 rdf:type schema:DefinedTerm
115 Na5d2de75188543f3bbae69b82efe8846 rdf:first sg:person.01327071542.83
116 rdf:rest Nba1c60d887a047c2bc7ce6d7edd96b02
117 Na61bbbc485e04576ab3a3e1996ebfd9a schema:name pubmed_id
118 schema:value 14971605
119 rdf:type schema:PropertyValue
120 Nae075724310743359d8d89a2b55f1345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Brain
122 rdf:type schema:DefinedTerm
123 Nae312c4a58d84ba896e8920a5832bebc rdf:first sg:person.010015703732.22
124 rdf:rest Nb40e708df3c24329ad49c60d1572d0d8
125 Nb2a4a22720864b2992be5bda248bd7a0 rdf:first sg:person.0707015400.83
126 rdf:rest Nbc2b7282ebcb40f1a7f55ab5a3edc913
127 Nb3d702f388084424ae61c4c3128178e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Aged, 80 and over
129 rdf:type schema:DefinedTerm
130 Nb40e708df3c24329ad49c60d1572d0d8 rdf:first sg:person.01113672270.93
131 rdf:rest N5d0bdd62ac6a4e2ebb883ca6355b89c9
132 Nb6b8abdccaa34354b7fa598062f7e7ac rdf:first sg:person.014520275124.13
133 rdf:rest Ndc6be51ecd924dc793bc5cb711e6a94a
134 Nba1c60d887a047c2bc7ce6d7edd96b02 rdf:first sg:person.012464636742.29
135 rdf:rest Nae312c4a58d84ba896e8920a5832bebc
136 Nbc2b7282ebcb40f1a7f55ab5a3edc913 rdf:first sg:person.01040755345.35
137 rdf:rest Na5a36e677c76428a9dd32997573251f4
138 Nc6960f3071e7453686988a202541c117 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Sensitivity and Specificity
140 rdf:type schema:DefinedTerm
141 Nc91ba894cb5d4bc8b8c8e3ffd889767f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Humans
143 rdf:type schema:DefinedTerm
144 Nd3c41dc1b90f4980824f22bf211dfdcb schema:name doi
145 schema:value 10.1007/bf02984969
146 rdf:type schema:PropertyValue
147 Nd6e84990eebf4fe69a38a783c519f6ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 Nd83e1e4adaf94def9459dbc50c663d11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Adult
152 rdf:type schema:DefinedTerm
153 Nd8b5f8139cd341dc9741f8cb6375035c schema:name Department of Radiology, Kasukabe Hospital, Japan
154 rdf:type schema:Organization
155 Ndc6be51ecd924dc793bc5cb711e6a94a rdf:first sg:person.010476276272.43
156 rdf:rest N5c3219fa58da45c3a86fd3e1dcd8a416
157 Nec984c1907c14b5a8e2b5dd119a8b2e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Male
159 rdf:type schema:DefinedTerm
160 Nee8ec4b77d6c43bd9e881be6c728d3ef schema:volumeNumber 17
161 rdf:type schema:PublicationVolume
162 Nf1a4fdd029994b7babbb3b7439057ac1 schema:name Department of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders, Japan
163 rdf:type schema:Organization
164 Nf90b456c13b54903ad1f6cc1952d1552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Image Interpretation, Computer-Assisted
166 rdf:type schema:DefinedTerm
167 Nf95b3131cbb74212a65ff7be3c346929 schema:name dimensions_id
168 schema:value pub.1038755160
169 rdf:type schema:PropertyValue
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
174 schema:name Neurosciences
175 rdf:type schema:DefinedTerm
176 sg:journal.1099601 schema:issn 0914-7187
177 1864-6433
178 schema:name Annals of Nuclear Medicine
179 rdf:type schema:Periodical
180 sg:person.010015703732.22 schema:affiliation N51b1652f90104ca9a8418914dec8d969
181 schema:familyName Matsuda
182 schema:givenName Hiroshi
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015703732.22
184 rdf:type schema:Person
185 sg:person.01005237677.88 schema:affiliation N6e8b86e3d47b4f79aa98fd42cb88a2e8
186 schema:familyName Honda
187 schema:givenName Norinari
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005237677.88
189 rdf:type schema:Person
190 sg:person.01040755345.35 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
191 schema:familyName Momose
192 schema:givenName Toshimitsu
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040755345.35
194 rdf:type schema:Person
195 sg:person.01041722337.05 schema:affiliation https://www.grid.ac/institutes/grid.411898.d
196 schema:familyName Mori
197 schema:givenName Yutaka
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041722337.05
199 rdf:type schema:Person
200 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
201 schema:familyName Inoue
202 schema:givenName Yusuke
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
204 rdf:type schema:Person
205 sg:person.01113672270.93 schema:affiliation Nf1a4fdd029994b7babbb3b7439057ac1
206 schema:familyName Imabayashi
207 schema:givenName Etsuko
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113672270.93
209 rdf:type schema:Person
210 sg:person.011457476122.47 schema:affiliation https://www.grid.ac/institutes/grid.410793.8
211 schema:familyName Koizumi
212 schema:givenName Kiyoshi
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457476122.47
214 rdf:type schema:Person
215 sg:person.012464636742.29 schema:affiliation https://www.grid.ac/institutes/grid.419638.1
216 schema:familyName Matsumoto
217 schema:givenName Tohru
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464636742.29
219 rdf:type schema:Person
220 sg:person.01275701124.92 schema:affiliation Nd8b5f8139cd341dc9741f8cb6375035c
221 schema:familyName Oshima
222 schema:givenName Motoo
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275701124.92
224 rdf:type schema:Person
225 sg:person.01327071542.83 schema:affiliation N5d8910724fd64c94901119e48cf28ccc
226 schema:familyName Machida
227 schema:givenName Kikuo
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327071542.83
229 rdf:type schema:Person
230 sg:person.014520275124.13 schema:affiliation https://www.grid.ac/institutes/grid.258622.9
231 schema:familyName Hosono
232 schema:givenName Makoto
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520275124.13
234 rdf:type schema:Person
235 sg:person.0611771144.21 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
236 schema:familyName Hashimoto
237 schema:givenName Jun
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611771144.21
239 rdf:type schema:Person
240 sg:person.0707015400.83 schema:affiliation https://www.grid.ac/institutes/grid.416614.0
241 schema:familyName Kosuda
242 schema:givenName Shigeru
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707015400.83
244 rdf:type schema:Person
245 sg:pub.10.1007/bf01728771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014119476
246 https://doi.org/10.1007/bf01728771
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf02988596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047696517
249 https://doi.org/10.1007/bf02988596
250 rdf:type schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1074675020 schema:CreativeWork
252 https://app.dimensions.ai/details/publication/pub.1075226309 schema:CreativeWork
253 https://app.dimensions.ai/details/publication/pub.1077159693 schema:CreativeWork
254 https://app.dimensions.ai/details/publication/pub.1082509074 schema:CreativeWork
255 https://app.dimensions.ai/details/publication/pub.1082637779 schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1082731841 schema:CreativeWork
257 https://app.dimensions.ai/details/publication/pub.1082803307 schema:CreativeWork
258 https://app.dimensions.ai/details/publication/pub.1082813540 schema:CreativeWork
259 https://doi.org/10.1002/ana.410420114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008549136
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1006/nimg.2002.1208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021548669
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/0022-3956(75)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523106
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1097/00004424-198609000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014660919
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1097/00004424-198903000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853682
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1532-5415.1995.tb07400.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006204
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1148/radiology.198.3.8628880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082885179
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1148/radiology.202.3.9051035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083053377
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1212/wnl.34.7.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024664401
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1212/wnl.50.6.1563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064376291
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.258622.9 schema:alternateName Kindai University
280 schema:name Department of Radiology, Faculty of Medicine, Kinki University, Japan
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
283 schema:name Department of Radiology, Faculty of Medicine, Keio University, Japan
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
286 schema:name Department of Radiology, Faculty of Medicine, University of Tokyo, Japan
287 Department of Radiology, Institute of Medical Science, University of Tokyo, Japan
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.410793.8 schema:alternateName Tokyo Medical University
290 schema:name Department of Radiology, Tokyo Medical University, Japan
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.411898.d schema:alternateName Jikei University
293 schema:name Department of Radiology, Jikei University School of Medicine, Japan
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.416614.0 schema:alternateName National Defense Medical College
296 schema:name Department of Radiology, National Defense Medical College, Japan
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.419638.1 schema:alternateName National Institute of Radiological Sciences
299 schema:name National Institute of Radiological Sciences, Japan
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...