Washout algorithm with fuzzy-based tuning for a motion simulator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

Jae-Bok Song, Ui-Jung Jung, Hee-Dong Ko

ABSTRACT

In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research the Stewart-Gough-platform-based motion simulator has been developed. Implementation of vehicle dynamics is necessary in the motion simulator for realistic sense of motion, so bicycle dynamics is adopted in this research. In order to compensate for the limited range of the motion simulator compared with the real vehicle motion, washout algorithm composed of high-pass filter, low-pass filter and tilt coordination is usually employed. Generally, the washout algorithm is used with fixed parameters. In this research a new approach is proposed to tune the filter parameters based on fuzzy logic in real-time. The cutoff frequencies of the filters are adjusted according to the workspace margins and driving conditions. It is shown that the washout filter with the fuzzy-based parameters presents better performance than that with the fixed ones. More... »

PAGES

221-229

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02984393

DOI

http://dx.doi.org/10.1007/bf02984393

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018219278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Mechanical Engineering, Korea University, 136-701, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Jae-Bok", 
        "id": "sg:person.014564140207.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564140207.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imaging Media Research Center, KIST, 136-791, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Ui-Jung", 
        "id": "sg:person.0710522057.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710522057.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imaging Media Research Center, KIST, 136-791, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Hee-Dong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2514/3.59800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022122532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028809618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.2158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052849094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1982.4308915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vr.2001.913790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093736989"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-02", 
    "datePublishedReg": "2003-02-01", 
    "description": "In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research the Stewart-Gough-platform-based motion simulator has been developed. Implementation of vehicle dynamics is necessary in the motion simulator for realistic sense of motion, so bicycle dynamics is adopted in this research. In order to compensate for the limited range of the motion simulator compared with the real vehicle motion, washout algorithm composed of high-pass filter, low-pass filter and tilt coordination is usually employed. Generally, the washout algorithm is used with fixed parameters. In this research a new approach is proposed to tune the filter parameters based on fuzzy logic in real-time. The cutoff frequencies of the filters are adjusted according to the workspace margins and driving conditions. It is shown that the washout filter with the fuzzy-based parameters presents better performance than that with the fixed ones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02984393", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1296250", 
        "issn": [
          "1226-4865"
        ], 
        "name": "KSME International Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Washout algorithm with fuzzy-based tuning for a motion simulator", 
    "pagination": "221-229", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56ceeddf657957e3986f4996cfc96d288d509f4a55163ef0a692470b770c83c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02984393"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018219278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02984393", 
      "https://app.dimensions.ai/details/publication/pub.1018219278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02984393"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02984393'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02984393'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02984393'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02984393'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02984393 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nff8f856cb75f4b4b8e2d3e8812f1a589
4 schema:citation https://doi.org/10.1109/tsmc.1982.4308915
5 https://doi.org/10.1109/vr.2001.913790
6 https://doi.org/10.2514/2.2158
7 https://doi.org/10.2514/3.20557
8 https://doi.org/10.2514/3.59800
9 schema:datePublished 2003-02
10 schema:datePublishedReg 2003-02-01
11 schema:description In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research the Stewart-Gough-platform-based motion simulator has been developed. Implementation of vehicle dynamics is necessary in the motion simulator for realistic sense of motion, so bicycle dynamics is adopted in this research. In order to compensate for the limited range of the motion simulator compared with the real vehicle motion, washout algorithm composed of high-pass filter, low-pass filter and tilt coordination is usually employed. Generally, the washout algorithm is used with fixed parameters. In this research a new approach is proposed to tune the filter parameters based on fuzzy logic in real-time. The cutoff frequencies of the filters are adjusted according to the workspace margins and driving conditions. It is shown that the washout filter with the fuzzy-based parameters presents better performance than that with the fixed ones.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N05c551f0edb34ba09ba80ce9c725d756
16 N2306d1f4e118472a817756c524d4b527
17 sg:journal.1296250
18 schema:name Washout algorithm with fuzzy-based tuning for a motion simulator
19 schema:pagination 221-229
20 schema:productId N4910feebf1544b51a1d68124e12d2951
21 Nc06d43c278474ebdbd469702b4fc2d7f
22 Nd87cafa65d1540d8b552471594a9c08d
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018219278
24 https://doi.org/10.1007/bf02984393
25 schema:sdDatePublished 2019-04-10T23:22
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N0de82c936a5a426baa1f1917b4a068cf
28 schema:url http://link.springer.com/10.1007%2FBF02984393
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N05c551f0edb34ba09ba80ce9c725d756 schema:issueNumber 2
33 rdf:type schema:PublicationIssue
34 N0de82c936a5a426baa1f1917b4a068cf schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N2306d1f4e118472a817756c524d4b527 schema:volumeNumber 17
37 rdf:type schema:PublicationVolume
38 N30148fdd0143456e94f7540d924efc54 schema:affiliation Nfc6b2f24ef4d4f1786da4bfb5062fb31
39 schema:familyName Ko
40 schema:givenName Hee-Dong
41 rdf:type schema:Person
42 N3470e2ac05d34fe6a61a4e34d669eaf5 rdf:first N30148fdd0143456e94f7540d924efc54
43 rdf:rest rdf:nil
44 N4910feebf1544b51a1d68124e12d2951 schema:name dimensions_id
45 schema:value pub.1018219278
46 rdf:type schema:PropertyValue
47 N98a944ac3e5f4338adc025aa45e71bd5 schema:name Imaging Media Research Center, KIST, 136-791, Seoul, Korea
48 rdf:type schema:Organization
49 Nc06d43c278474ebdbd469702b4fc2d7f schema:name readcube_id
50 schema:value 56ceeddf657957e3986f4996cfc96d288d509f4a55163ef0a692470b770c83c5
51 rdf:type schema:PropertyValue
52 Nd87cafa65d1540d8b552471594a9c08d schema:name doi
53 schema:value 10.1007/bf02984393
54 rdf:type schema:PropertyValue
55 Ne863e28884bd4abcae560ac0f79be3bf rdf:first sg:person.0710522057.16
56 rdf:rest N3470e2ac05d34fe6a61a4e34d669eaf5
57 Nfc6b2f24ef4d4f1786da4bfb5062fb31 schema:name Imaging Media Research Center, KIST, 136-791, Seoul, Korea
58 rdf:type schema:Organization
59 Nff8f856cb75f4b4b8e2d3e8812f1a589 rdf:first sg:person.014564140207.01
60 rdf:rest Ne863e28884bd4abcae560ac0f79be3bf
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1296250 schema:issn 1226-4865
68 schema:name KSME International Journal
69 rdf:type schema:Periodical
70 sg:person.014564140207.01 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
71 schema:familyName Song
72 schema:givenName Jae-Bok
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564140207.01
74 rdf:type schema:Person
75 sg:person.0710522057.16 schema:affiliation N98a944ac3e5f4338adc025aa45e71bd5
76 schema:familyName Jung
77 schema:givenName Ui-Jung
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710522057.16
79 rdf:type schema:Person
80 https://doi.org/10.1109/tsmc.1982.4308915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793410
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/vr.2001.913790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093736989
83 rdf:type schema:CreativeWork
84 https://doi.org/10.2514/2.2158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052849094
85 rdf:type schema:CreativeWork
86 https://doi.org/10.2514/3.20557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028809618
87 rdf:type schema:CreativeWork
88 https://doi.org/10.2514/3.59800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022122532
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
91 schema:name Department of Mechanical Engineering, Korea University, 136-701, Seoul, Korea
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...