Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

Hideyuki Hashimoto, Masato Suzuki, Masaki Oshida, Takeshi Nagashima, Hiroshi Yagata, Tomotane Shishikura, Nobuhiro Imanaka, Nobuyuki Nakajima

ABSTRACT

BackgroundA retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies.MethodsWe evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (Tl, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis.ResultsThe mean of the halo ratio was 0.38+-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p>0.001 and p>0.0005, respectively). The specificity of a high halo ratio in the Tl classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p=0.0232).ConclusionsPreoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer. More... »

PAGES

241-246

References to SciGraph publications

  • 1957-09. Histological Grading and Prognosis in Breast Cancer in BRITISH JOURNAL OF CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02967467

    DOI

    http://dx.doi.org/10.1007/bf02967467

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049552209

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11029805


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Ductal, Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphatic Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multivariate Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Staging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Preoperative Care", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ultrasonography, Mammary", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hashimoto", 
            "givenName": "Hideyuki", 
            "id": "sg:person.01146707641.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146707641.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suzuki", 
            "givenName": "Masato", 
            "id": "sg:person.014436540571.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436540571.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oshida", 
            "givenName": "Masaki", 
            "id": "sg:person.01032461241.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032461241.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagashima", 
            "givenName": "Takeshi", 
            "id": "sg:person.01140027675.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagata", 
            "givenName": "Hiroshi", 
            "id": "sg:person.0776757375.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776757375.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shishikura", 
            "givenName": "Tomotane", 
            "id": "sg:person.01020352556.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020352556.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Imanaka", 
            "givenName": "Nobuhiro", 
            "id": "sg:person.01237453161.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237453161.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The First Department of Surgery, Chiba University School of Medicine, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakajima", 
            "givenName": "Nobuyuki", 
            "id": "sg:person.0712131445.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712131445.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/bjc.1957.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033483945", 
              "https://doi.org/10.1038/bjc.1957.43"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-08", 
        "datePublishedReg": "2000-08-01", 
        "description": "BackgroundA retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies.MethodsWe evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (Tl, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis.ResultsThe mean of the halo ratio was 0.38+-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p>0.001 and p>0.0005, respectively). The specificity of a high halo ratio in the Tl classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p=0.0232).ConclusionsPreoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02967467", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1021080", 
            "issn": [
              "1340-6868", 
              "1880-4233"
            ], 
            "name": "Breast Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "disease-free survival", 
          "breast carcinoma patients", 
          "breast cancer", 
          "negative predictive value", 
          "axillary lymph", 
          "carcinoma patients", 
          "node metastasis", 
          "predictive value", 
          "quantitative ultrasound", 
          "useful non-invasive method", 
          "axillary node metastases", 
          "primary breast cancer", 
          "lymph node status", 
          "quantitative ultrasound assessment", 
          "non-invasive method", 
          "independent predictors", 
          "retrospective study", 
          "ultrasound assessment", 
          "node status", 
          "worse prognosis", 
          "patients", 
          "prognosis", 
          "multivariate analysis", 
          "ratio group", 
          "internal echoes", 
          "metastasis", 
          "cancer", 
          "greatest dimension", 
          "tumors", 
          "lymph", 
          "ultrasound", 
          "survival", 
          "predictors", 
          "computer image analysis", 
          "ultrasonography", 
          "malignancy", 
          "MethodsWe", 
          "months", 
          "status", 
          "halo area", 
          "group", 
          "presence", 
          "halo ratio", 
          "specificity", 
          "assessment", 
          "ratio", 
          "study", 
          "image analysis", 
          "area", 
          "analysis", 
          "values", 
          "margin", 
          "classification", 
          "features", 
          "ratio of halo", 
          "echoes", 
          "means", 
          "method", 
          "halo", 
          "sum", 
          "dimensions", 
          "reflection", 
          "BackgroundA retrospective study", 
          "preoperative quantitative ultrasound assessment", 
          "area of halo", 
          "high halo ratio group", 
          "halo ratio group", 
          "high halo ratio", 
          "Tl classification", 
          "ConclusionsPreoperative quantitative ultrasound"
        ], 
        "name": "Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer", 
        "pagination": "241-246", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049552209"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02967467"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11029805"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02967467", 
          "https://app.dimensions.ai/details/publication/pub.1049552209"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_331.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02967467"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      22 PREDICATES      116 URIs      107 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02967467 schema:about N2939b9cab2c94190a9e3a5d265f725de
    2 N33f3e96fa74640e7b13a3644f972fba9
    3 N38e697f7200e4909a992c8d6e4b74797
    4 N424579107270440eac19c672d8f94657
    5 N43ea97d13df04b47a97bc7655ac56aca
    6 N52b76dc93086483b93b362bcc04c84a5
    7 N54c7148ab65d4d388c4e611a6ae3eb75
    8 N62d56f5a7b7e497ea0c1598eacb1a124
    9 N670e7b02042b4e568c63b7449640c405
    10 N6fd6017e7d5f4ec18655ecad8139f24d
    11 N7f9a86486e30427088183838dcff8d91
    12 Nbe946119581b4520b374fb72aad88e84
    13 Nc0c03f5fbfb740f185b653c98332d634
    14 Nc394d898ed9547729c3aaee650458ae4
    15 Nc4de757da55f4220b25495d89dbb4294
    16 Nc999a661bb8944d6908a0e63ca781d01
    17 Nd377e24c2a444a679776cdb02d1a1c1d
    18 Nf5955f2069584fde8b81210f63c13506
    19 anzsrc-for:11
    20 anzsrc-for:1112
    21 schema:author N145abccb8dec4b0482f5f7c03756b28b
    22 schema:citation sg:pub.10.1038/bjc.1957.43
    23 schema:datePublished 2000-08
    24 schema:datePublishedReg 2000-08-01
    25 schema:description BackgroundA retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies.MethodsWe evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (Tl, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis.ResultsThe mean of the halo ratio was 0.38+-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p>0.001 and p>0.0005, respectively). The specificity of a high halo ratio in the Tl classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p=0.0232).ConclusionsPreoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N72a323af8a2846359b2e842f6a05c72e
    30 Nf2dcb7a68b3946e88b661b0b47a1540a
    31 sg:journal.1021080
    32 schema:keywords BackgroundA retrospective study
    33 ConclusionsPreoperative quantitative ultrasound
    34 MethodsWe
    35 Tl classification
    36 analysis
    37 area
    38 area of halo
    39 assessment
    40 axillary lymph
    41 axillary node metastases
    42 breast cancer
    43 breast carcinoma patients
    44 cancer
    45 carcinoma patients
    46 classification
    47 computer image analysis
    48 dimensions
    49 disease-free survival
    50 echoes
    51 features
    52 greatest dimension
    53 group
    54 halo
    55 halo area
    56 halo ratio
    57 halo ratio group
    58 high halo ratio
    59 high halo ratio group
    60 image analysis
    61 independent predictors
    62 internal echoes
    63 lymph
    64 lymph node status
    65 malignancy
    66 margin
    67 means
    68 metastasis
    69 method
    70 months
    71 multivariate analysis
    72 negative predictive value
    73 node metastasis
    74 node status
    75 non-invasive method
    76 patients
    77 predictive value
    78 predictors
    79 preoperative quantitative ultrasound assessment
    80 presence
    81 primary breast cancer
    82 prognosis
    83 quantitative ultrasound
    84 quantitative ultrasound assessment
    85 ratio
    86 ratio group
    87 ratio of halo
    88 reflection
    89 retrospective study
    90 specificity
    91 status
    92 study
    93 sum
    94 survival
    95 tumors
    96 ultrasonography
    97 ultrasound
    98 ultrasound assessment
    99 useful non-invasive method
    100 values
    101 worse prognosis
    102 schema:name Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer
    103 schema:pagination 241-246
    104 schema:productId Nb76d36b497f744ada5dc839b93a3f71d
    105 Nbccf03eb413b4d59b53fcc8df2b23ab5
    106 Nd0bab45c549b4fc9a726c68060ec0d80
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049552209
    108 https://doi.org/10.1007/bf02967467
    109 schema:sdDatePublished 2021-12-01T19:13
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N00c3d0c201bb4319951ec828c2297a87
    112 schema:url https://doi.org/10.1007/bf02967467
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N00c3d0c201bb4319951ec828c2297a87 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N145abccb8dec4b0482f5f7c03756b28b rdf:first sg:person.01146707641.14
    119 rdf:rest Nb098e9af1b5d4dde8b87626c6b6d220d
    120 N2939b9cab2c94190a9e3a5d265f725de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Predictive Value of Tests
    122 rdf:type schema:DefinedTerm
    123 N33f3e96fa74640e7b13a3644f972fba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Lymphatic Metastasis
    125 rdf:type schema:DefinedTerm
    126 N38e697f7200e4909a992c8d6e4b74797 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N424579107270440eac19c672d8f94657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Middle Aged
    131 rdf:type schema:DefinedTerm
    132 N43ea97d13df04b47a97bc7655ac56aca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Image Processing, Computer-Assisted
    134 rdf:type schema:DefinedTerm
    135 N4de925d0e0f04648be277f25000e5cf4 rdf:first sg:person.0776757375.53
    136 rdf:rest N6856831e4b1541008344c0d9272c0c76
    137 N52b76dc93086483b93b362bcc04c84a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Retrospective Studies
    139 rdf:type schema:DefinedTerm
    140 N54c7148ab65d4d388c4e611a6ae3eb75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Neoplasm Staging
    142 rdf:type schema:DefinedTerm
    143 N62d56f5a7b7e497ea0c1598eacb1a124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Adult
    145 rdf:type schema:DefinedTerm
    146 N670e7b02042b4e568c63b7449640c405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Aged, 80 and over
    148 rdf:type schema:DefinedTerm
    149 N6856831e4b1541008344c0d9272c0c76 rdf:first sg:person.01020352556.63
    150 rdf:rest N6cf8e1adde4444f58a23bd3cb5642c13
    151 N6cf8e1adde4444f58a23bd3cb5642c13 rdf:first sg:person.01237453161.24
    152 rdf:rest Nfa9a6d6cf65d405290b7755a8bcb4ef1
    153 N6fd6017e7d5f4ec18655ecad8139f24d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Breast Neoplasms
    155 rdf:type schema:DefinedTerm
    156 N72538b9ea35746be913cfb10476c1a5d rdf:first sg:person.01032461241.04
    157 rdf:rest N86365a45d4334bdc9c03d948bae9a6eb
    158 N72a323af8a2846359b2e842f6a05c72e schema:issueNumber 3
    159 rdf:type schema:PublicationIssue
    160 N7f9a86486e30427088183838dcff8d91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Multivariate Analysis
    162 rdf:type schema:DefinedTerm
    163 N86365a45d4334bdc9c03d948bae9a6eb rdf:first sg:person.01140027675.04
    164 rdf:rest N4de925d0e0f04648be277f25000e5cf4
    165 Nb098e9af1b5d4dde8b87626c6b6d220d rdf:first sg:person.014436540571.11
    166 rdf:rest N72538b9ea35746be913cfb10476c1a5d
    167 Nb76d36b497f744ada5dc839b93a3f71d schema:name dimensions_id
    168 schema:value pub.1049552209
    169 rdf:type schema:PropertyValue
    170 Nbccf03eb413b4d59b53fcc8df2b23ab5 schema:name pubmed_id
    171 schema:value 11029805
    172 rdf:type schema:PropertyValue
    173 Nbe946119581b4520b374fb72aad88e84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Prognosis
    175 rdf:type schema:DefinedTerm
    176 Nc0c03f5fbfb740f185b653c98332d634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Carcinoma, Ductal, Breast
    178 rdf:type schema:DefinedTerm
    179 Nc394d898ed9547729c3aaee650458ae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Aged
    181 rdf:type schema:DefinedTerm
    182 Nc4de757da55f4220b25495d89dbb4294 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Preoperative Care
    184 rdf:type schema:DefinedTerm
    185 Nc999a661bb8944d6908a0e63ca781d01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Female
    187 rdf:type schema:DefinedTerm
    188 Nd0bab45c549b4fc9a726c68060ec0d80 schema:name doi
    189 schema:value 10.1007/bf02967467
    190 rdf:type schema:PropertyValue
    191 Nd377e24c2a444a679776cdb02d1a1c1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Ultrasonography, Mammary
    193 rdf:type schema:DefinedTerm
    194 Nf2dcb7a68b3946e88b661b0b47a1540a schema:volumeNumber 7
    195 rdf:type schema:PublicationVolume
    196 Nf5955f2069584fde8b81210f63c13506 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Disease-Free Survival
    198 rdf:type schema:DefinedTerm
    199 Nfa9a6d6cf65d405290b7755a8bcb4ef1 rdf:first sg:person.0712131445.60
    200 rdf:rest rdf:nil
    201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Medical and Health Sciences
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Oncology and Carcinogenesis
    206 rdf:type schema:DefinedTerm
    207 sg:journal.1021080 schema:issn 1340-6868
    208 1880-4233
    209 schema:name Breast Cancer
    210 schema:publisher Springer Nature
    211 rdf:type schema:Periodical
    212 sg:person.01020352556.63 schema:affiliation grid-institutes:grid.136304.3
    213 schema:familyName Shishikura
    214 schema:givenName Tomotane
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020352556.63
    216 rdf:type schema:Person
    217 sg:person.01032461241.04 schema:affiliation grid-institutes:grid.136304.3
    218 schema:familyName Oshida
    219 schema:givenName Masaki
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032461241.04
    221 rdf:type schema:Person
    222 sg:person.01140027675.04 schema:affiliation grid-institutes:grid.136304.3
    223 schema:familyName Nagashima
    224 schema:givenName Takeshi
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04
    226 rdf:type schema:Person
    227 sg:person.01146707641.14 schema:affiliation grid-institutes:grid.136304.3
    228 schema:familyName Hashimoto
    229 schema:givenName Hideyuki
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146707641.14
    231 rdf:type schema:Person
    232 sg:person.01237453161.24 schema:affiliation grid-institutes:grid.136304.3
    233 schema:familyName Imanaka
    234 schema:givenName Nobuhiro
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237453161.24
    236 rdf:type schema:Person
    237 sg:person.014436540571.11 schema:affiliation grid-institutes:grid.136304.3
    238 schema:familyName Suzuki
    239 schema:givenName Masato
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436540571.11
    241 rdf:type schema:Person
    242 sg:person.0712131445.60 schema:affiliation grid-institutes:grid.136304.3
    243 schema:familyName Nakajima
    244 schema:givenName Nobuyuki
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712131445.60
    246 rdf:type schema:Person
    247 sg:person.0776757375.53 schema:affiliation grid-institutes:grid.136304.3
    248 schema:familyName Yagata
    249 schema:givenName Hiroshi
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776757375.53
    251 rdf:type schema:Person
    252 sg:pub.10.1038/bjc.1957.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033483945
    253 https://doi.org/10.1038/bjc.1957.43
    254 rdf:type schema:CreativeWork
    255 grid-institutes:grid.136304.3 schema:alternateName The First Department of Surgery, Chiba University School of Medicine, Japan
    256 schema:name The First Department of Surgery, Chiba University School of Medicine, Japan
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...