Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

Hideyuki Hashimoto, Masato Suzuki, Masaki Oshida, Takeshi Nagashima, Hiroshi Yagata, Tomotane Shishikura, Nobuhiro Imanaka, Nobuyuki Nakajima

ABSTRACT

BACKGROUND: A retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies. METHODS: We evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (T1, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis. RESULTS: The mean of the halo ratio was 0.38+/-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p <0.001 and p <0.0005, respectively). The specificity of a high halo ratio in the T1 classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p =0.0232). CONCLUSIONS: Preoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer. More... »

PAGES

241-246

References to SciGraph publications

  • 1957-09. Histological Grading and Prognosis in Breast Cancer in BRITISH JOURNAL OF CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02967467

    DOI

    http://dx.doi.org/10.1007/bf02967467

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049552209

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11029805


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Ductal, Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphatic Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multivariate Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Staging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Preoperative Care", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ultrasonography, Mammary", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hashimoto", 
            "givenName": "Hideyuki", 
            "id": "sg:person.01146707641.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146707641.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suzuki", 
            "givenName": "Masato", 
            "id": "sg:person.014436540571.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436540571.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oshida", 
            "givenName": "Masaki", 
            "id": "sg:person.01032461241.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032461241.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagashima", 
            "givenName": "Takeshi", 
            "id": "sg:person.01140027675.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagata", 
            "givenName": "Hiroshi", 
            "id": "sg:person.0776757375.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776757375.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shishikura", 
            "givenName": "Tomotane", 
            "id": "sg:person.01020352556.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020352556.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Imanaka", 
            "givenName": "Nobuhiro", 
            "id": "sg:person.01237453161.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237453161.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "The First Department of Surgery, Chiba University School of Medicine, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakajima", 
            "givenName": "Nobuyuki", 
            "id": "sg:person.0712131445.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712131445.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1056/nejm198902233200803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000603879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-196104000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001086927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-196104000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001086927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1076-6332(98)80104-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002682090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0142(19970515)79:10<1918::aid-cncr12>3.0.co;2-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006175355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7863/jum.1989.8.3.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006513749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0142(19971101)80:9<1708::aid-cncr3>3.0.co;2-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008676573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0959-8049(95)00442-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009855778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012584461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012584461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0142(19890101)63:1<181::aid-cncr2820630129>3.0.co;2-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014399128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199101033240101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018913678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0142(19940201)73:3<664::aid-cncr2820730326>3.0.co;2-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022359178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-199409000-00015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025844838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-199409000-00015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025844838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000478-197912000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027272059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000478-197912000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027272059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0929-8266(97)10009-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030639721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1957.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033483945", 
              "https://doi.org/10.1038/bjc.1957.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1957.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033483945", 
              "https://doi.org/10.1038/bjc.1957.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0142(19980425)84:2<115::aid-cncr8>3.0.co;2-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033634354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bjs.1800730408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034129496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-199105000-00017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043487064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-199105000-00017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043487064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-199509000-00016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046104980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000658-199509000-00016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046104980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0142(19940801)74:3<878::aid-cncr2820740314>3.0.co;2-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048739062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4731(87)90394-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051209197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4731(87)90394-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051209197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078156138", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079168325", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079510856", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.158.2.3510440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079793395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081662655", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.147.1.6828727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081981714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.197.2.7480703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082378590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.1994.12.3.454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082392047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082870772", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.208.2.9680580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083296998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.1998.16.8.2672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083305985"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-08", 
        "datePublishedReg": "2000-08-01", 
        "description": "BACKGROUND: A retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies.\nMETHODS: We evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (T1, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis.\nRESULTS: The mean of the halo ratio was 0.38+/-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p <0.001 and p <0.0005, respectively). The specificity of a high halo ratio in the T1 classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p =0.0232).\nCONCLUSIONS: Preoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02967467", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1021080", 
            "issn": [
              "1340-6868", 
              "1880-4233"
            ], 
            "name": "Breast Cancer", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer", 
        "pagination": "241-246", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ec0dd1bcaa0a5b5df50382d19a50662a61380d5bd12d42749840e9c79848627a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11029805"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100888201"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02967467"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049552209"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02967467", 
          "https://app.dimensions.ai/details/publication/pub.1049552209"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13106_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02967467"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02967467'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      21 PREDICATES      80 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02967467 schema:about N044313ec7a584f36bc95fca34a24e857
    2 N0e5e8ff6a71544ca91863305d71002b4
    3 N1dadd1612f0945ff87ae5a6172324a49
    4 N21b76c966fe948caa8521a42f956a2e6
    5 N2243213d05cd425680b38dc966bdfce9
    6 N4d5fc04c3dcf403bbab32cd7f48553e2
    7 N554ac36632fc4c0ca93c349296346bd6
    8 N5c253848d0b94408abe8725eee49306a
    9 N71b33dfe4fa940ff8fdc4e5eb9e2cdde
    10 N90cf63b48519436c8c88c5e621859e56
    11 N91105528d8c9456ca995d664186c7363
    12 Nb30eb665349248a1bcea8ff650b8319d
    13 Nd167d3953bcd4e84bc3ae85ded45eced
    14 Nda835784a86a423aa21f4313470ad255
    15 Ne5eadd1656614133bf388543cc3e1d05
    16 Nebbf5b0232f4476a8ad3f33333aecd69
    17 Neff87df03f154cc4913ccaf6a2590323
    18 Nf549593c462a40d88d2a939b3314d605
    19 anzsrc-for:11
    20 anzsrc-for:1112
    21 schema:author N1d5a7a497dea479d8d84137284ec1a8d
    22 schema:citation sg:pub.10.1038/bjc.1957.43
    23 https://app.dimensions.ai/details/publication/pub.1078156138
    24 https://app.dimensions.ai/details/publication/pub.1079168325
    25 https://app.dimensions.ai/details/publication/pub.1079510856
    26 https://app.dimensions.ai/details/publication/pub.1081662655
    27 https://app.dimensions.ai/details/publication/pub.1082870772
    28 https://doi.org/10.1002/(sici)1097-0142(19970515)79:10<1918::aid-cncr12>3.0.co;2-y
    29 https://doi.org/10.1002/(sici)1097-0142(19971101)80:9<1708::aid-cncr3>3.0.co;2-a
    30 https://doi.org/10.1002/(sici)1097-0142(19980425)84:2<115::aid-cncr8>3.0.co;2-o
    31 https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3
    32 https://doi.org/10.1002/1097-0142(19890101)63:1<181::aid-cncr2820630129>3.0.co;2-h
    33 https://doi.org/10.1002/1097-0142(19940201)73:3<664::aid-cncr2820730326>3.0.co;2-s
    34 https://doi.org/10.1002/1097-0142(19940801)74:3<878::aid-cncr2820740314>3.0.co;2-4
    35 https://doi.org/10.1002/bjs.1800730408
    36 https://doi.org/10.1016/0022-4731(87)90394-3
    37 https://doi.org/10.1016/0140-6736(92)93150-l
    38 https://doi.org/10.1016/0959-8049(95)00442-4
    39 https://doi.org/10.1016/s0929-8266(97)10009-x
    40 https://doi.org/10.1016/s1076-6332(98)80104-9
    41 https://doi.org/10.1056/nejm198902233200803
    42 https://doi.org/10.1056/nejm199101033240101
    43 https://doi.org/10.1097/00000478-197912000-00005
    44 https://doi.org/10.1097/00000658-196104000-00002
    45 https://doi.org/10.1097/00000658-199409000-00015
    46 https://doi.org/10.1097/00000658-199509000-00016
    47 https://doi.org/10.1097/00004728-199105000-00017
    48 https://doi.org/10.1148/radiology.147.1.6828727
    49 https://doi.org/10.1148/radiology.158.2.3510440
    50 https://doi.org/10.1148/radiology.197.2.7480703
    51 https://doi.org/10.1148/radiology.208.2.9680580
    52 https://doi.org/10.1200/jco.1994.12.3.454
    53 https://doi.org/10.1200/jco.1998.16.8.2672
    54 https://doi.org/10.7863/jum.1989.8.3.115
    55 schema:datePublished 2000-08
    56 schema:datePublishedReg 2000-08-01
    57 schema:description BACKGROUND: A retrospective study was performed to determine whether preoperative quantitative ultrasound assessment could predict axillary lymph node metastases and prognosis in patients with breast cancer. We focused on the presence of a halo, which is one of the features of breast cancer on ultrasound and represents reflections from the invading margin around infiltrating malignancies. METHODS: We evaluated ultrasonography from 187 infiltrating breast carcinoma patients with tumors 5 cm or less in greatest dimension (T1, T2). Using computer image analysis, the halo area (H) and the sum of the area of halo and internal echo (total tumor area (T)) were measured, and the ratio of halo to entire tumor (H/T, halo ratio) was calculated and compared with lymph node status and prognosis. RESULTS: The mean of the halo ratio was 0.38+/-0.13. Using the value of 0.42 as a cut-off, the high halo ratio group had significantly worse prognoses for both overall and disease-free survival at 49 months in median follow-up (p <0.001 and p <0.0005, respectively). The specificity of a high halo ratio in the T1 classification for predicting axillary node metastasis was 83.1%, with a negative predictive value of 86.8%. In patients with tumors 1.0 cm or smaller, the negative predictive value was 100%. In a multivariate analysis, halo ratio was an independent predictor of disease-free survival of breast carcinoma patients (p =0.0232). CONCLUSIONS: Preoperative quantitative ultrasound may be a useful non-invasive method for predicting the presence of axillary lymph node metastases and prognosis in patients with primary breast cancer.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf N14f828dcb3cc449c992eb917d2402a45
    62 Nf163248485c6470ba3b9662ca81168d8
    63 sg:journal.1021080
    64 schema:name Quantitative ultrasound as a predictor of node metastases and prognosis in patients with breast cancer
    65 schema:pagination 241-246
    66 schema:productId N18e8ce7992f544c3b45c93d277080f33
    67 N35ef285913284406b3a31c019c6d2c2d
    68 N53db951739ed47549e093c248b7494e5
    69 N80678119351b4b89bb5562407b8e0598
    70 Nb52556f2bff245caab56bea0dba7747a
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049552209
    72 https://doi.org/10.1007/bf02967467
    73 schema:sdDatePublished 2019-04-11T14:34
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher Nfefc8b5d59fb4925ac3ff96867e0906c
    76 schema:url http://link.springer.com/10.1007%2FBF02967467
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N044313ec7a584f36bc95fca34a24e857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Preoperative Care
    82 rdf:type schema:DefinedTerm
    83 N059551b452894ffc81463fbaad35ce80 rdf:first sg:person.0712131445.60
    84 rdf:rest rdf:nil
    85 N0e5e8ff6a71544ca91863305d71002b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Carcinoma, Ductal, Breast
    87 rdf:type schema:DefinedTerm
    88 N14f828dcb3cc449c992eb917d2402a45 schema:volumeNumber 7
    89 rdf:type schema:PublicationVolume
    90 N18e8ce7992f544c3b45c93d277080f33 schema:name nlm_unique_id
    91 schema:value 100888201
    92 rdf:type schema:PropertyValue
    93 N1d5a7a497dea479d8d84137284ec1a8d rdf:first sg:person.01146707641.14
    94 rdf:rest Nfadfde62e78c456faa141f716db5454c
    95 N1dadd1612f0945ff87ae5a6172324a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Retrospective Studies
    97 rdf:type schema:DefinedTerm
    98 N21b76c966fe948caa8521a42f956a2e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Humans
    100 rdf:type schema:DefinedTerm
    101 N2243213d05cd425680b38dc966bdfce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Ultrasonography, Mammary
    103 rdf:type schema:DefinedTerm
    104 N35ef285913284406b3a31c019c6d2c2d schema:name doi
    105 schema:value 10.1007/bf02967467
    106 rdf:type schema:PropertyValue
    107 N3fbcd32f4cb34473bc8f0e7621a5f37d rdf:first sg:person.01032461241.04
    108 rdf:rest N9a9055380ae04a63a0f1d8582deb04d6
    109 N4d5fc04c3dcf403bbab32cd7f48553e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Lymphatic Metastasis
    111 rdf:type schema:DefinedTerm
    112 N53db951739ed47549e093c248b7494e5 schema:name pubmed_id
    113 schema:value 11029805
    114 rdf:type schema:PropertyValue
    115 N554ac36632fc4c0ca93c349296346bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Prognosis
    117 rdf:type schema:DefinedTerm
    118 N5c253848d0b94408abe8725eee49306a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Aged
    120 rdf:type schema:DefinedTerm
    121 N71b33dfe4fa940ff8fdc4e5eb9e2cdde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Adult
    123 rdf:type schema:DefinedTerm
    124 N80678119351b4b89bb5562407b8e0598 schema:name readcube_id
    125 schema:value ec0dd1bcaa0a5b5df50382d19a50662a61380d5bd12d42749840e9c79848627a
    126 rdf:type schema:PropertyValue
    127 N90cf63b48519436c8c88c5e621859e56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Female
    129 rdf:type schema:DefinedTerm
    130 N91105528d8c9456ca995d664186c7363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Image Processing, Computer-Assisted
    132 rdf:type schema:DefinedTerm
    133 N9a9055380ae04a63a0f1d8582deb04d6 rdf:first sg:person.01140027675.04
    134 rdf:rest Ne00246e619f14571968de41f8c837b63
    135 Nb30eb665349248a1bcea8ff650b8319d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Predictive Value of Tests
    137 rdf:type schema:DefinedTerm
    138 Nb52556f2bff245caab56bea0dba7747a schema:name dimensions_id
    139 schema:value pub.1049552209
    140 rdf:type schema:PropertyValue
    141 Nba2902d84cab4017873346797ca81ca2 rdf:first sg:person.01237453161.24
    142 rdf:rest N059551b452894ffc81463fbaad35ce80
    143 Nd167d3953bcd4e84bc3ae85ded45eced schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Neoplasm Staging
    145 rdf:type schema:DefinedTerm
    146 Nda835784a86a423aa21f4313470ad255 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Aged, 80 and over
    148 rdf:type schema:DefinedTerm
    149 Ne00246e619f14571968de41f8c837b63 rdf:first sg:person.0776757375.53
    150 rdf:rest Nebffc885122548efa22d6ecca3cdae78
    151 Ne5eadd1656614133bf388543cc3e1d05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Disease-Free Survival
    153 rdf:type schema:DefinedTerm
    154 Nebbf5b0232f4476a8ad3f33333aecd69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Breast Neoplasms
    156 rdf:type schema:DefinedTerm
    157 Nebffc885122548efa22d6ecca3cdae78 rdf:first sg:person.01020352556.63
    158 rdf:rest Nba2902d84cab4017873346797ca81ca2
    159 Neff87df03f154cc4913ccaf6a2590323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Multivariate Analysis
    161 rdf:type schema:DefinedTerm
    162 Nf163248485c6470ba3b9662ca81168d8 schema:issueNumber 3
    163 rdf:type schema:PublicationIssue
    164 Nf549593c462a40d88d2a939b3314d605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Middle Aged
    166 rdf:type schema:DefinedTerm
    167 Nfadfde62e78c456faa141f716db5454c rdf:first sg:person.014436540571.11
    168 rdf:rest N3fbcd32f4cb34473bc8f0e7621a5f37d
    169 Nfefc8b5d59fb4925ac3ff96867e0906c schema:name Springer Nature - SN SciGraph project
    170 rdf:type schema:Organization
    171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Medical and Health Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Oncology and Carcinogenesis
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1021080 schema:issn 1340-6868
    178 1880-4233
    179 schema:name Breast Cancer
    180 rdf:type schema:Periodical
    181 sg:person.01020352556.63 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    182 schema:familyName Shishikura
    183 schema:givenName Tomotane
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020352556.63
    185 rdf:type schema:Person
    186 sg:person.01032461241.04 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    187 schema:familyName Oshida
    188 schema:givenName Masaki
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032461241.04
    190 rdf:type schema:Person
    191 sg:person.01140027675.04 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    192 schema:familyName Nagashima
    193 schema:givenName Takeshi
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04
    195 rdf:type schema:Person
    196 sg:person.01146707641.14 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    197 schema:familyName Hashimoto
    198 schema:givenName Hideyuki
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146707641.14
    200 rdf:type schema:Person
    201 sg:person.01237453161.24 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    202 schema:familyName Imanaka
    203 schema:givenName Nobuhiro
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237453161.24
    205 rdf:type schema:Person
    206 sg:person.014436540571.11 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    207 schema:familyName Suzuki
    208 schema:givenName Masato
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436540571.11
    210 rdf:type schema:Person
    211 sg:person.0712131445.60 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    212 schema:familyName Nakajima
    213 schema:givenName Nobuyuki
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712131445.60
    215 rdf:type schema:Person
    216 sg:person.0776757375.53 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    217 schema:familyName Yagata
    218 schema:givenName Hiroshi
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776757375.53
    220 rdf:type schema:Person
    221 sg:pub.10.1038/bjc.1957.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033483945
    222 https://doi.org/10.1038/bjc.1957.43
    223 rdf:type schema:CreativeWork
    224 https://app.dimensions.ai/details/publication/pub.1078156138 schema:CreativeWork
    225 https://app.dimensions.ai/details/publication/pub.1079168325 schema:CreativeWork
    226 https://app.dimensions.ai/details/publication/pub.1079510856 schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1081662655 schema:CreativeWork
    228 https://app.dimensions.ai/details/publication/pub.1082870772 schema:CreativeWork
    229 https://doi.org/10.1002/(sici)1097-0142(19970515)79:10<1918::aid-cncr12>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006175355
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1002/(sici)1097-0142(19971101)80:9<1708::aid-cncr3>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008676573
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1002/(sici)1097-0142(19980425)84:2<115::aid-cncr8>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1033634354
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639721
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1002/1097-0142(19890101)63:1<181::aid-cncr2820630129>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1014399128
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1002/1097-0142(19940201)73:3<664::aid-cncr2820730326>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1022359178
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1002/1097-0142(19940801)74:3<878::aid-cncr2820740314>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048739062
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1002/bjs.1800730408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034129496
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/0022-4731(87)90394-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051209197
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/0140-6736(92)93150-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1012584461
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/0959-8049(95)00442-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855778
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/s0929-8266(97)10009-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777413
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/s1076-6332(98)80104-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002682090
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1056/nejm198902233200803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000603879
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1056/nejm199101033240101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913678
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1097/00000478-197912000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027272059
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1097/00000658-196104000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086927
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1097/00000658-199409000-00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025844838
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1097/00000658-199509000-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046104980
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1097/00004728-199105000-00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043487064
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1148/radiology.147.1.6828727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081981714
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1148/radiology.158.2.3510440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079793395
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1148/radiology.197.2.7480703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082378590
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1148/radiology.208.2.9680580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083296998
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1200/jco.1994.12.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082392047
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1200/jco.1998.16.8.2672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083305985
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.7863/jum.1989.8.3.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006513749
    282 rdf:type schema:CreativeWork
    283 https://www.grid.ac/institutes/grid.136304.3 schema:alternateName Chiba University
    284 schema:name The First Department of Surgery, Chiba University School of Medicine, Japan
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...