In situ characterization of interface-microstructure dynamics in 3D-Directional Solidification of model transparent alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

Rohit Trivedi, Nathalie Bergeon, Bernard Billia, Blas Echebarria, Alain Karma, Shan Liu, Nathalie Mangelinck, Cédric Weiss

ABSTRACT

Microstructure plays a central role in determining properties of materials so that the fundamental understanding of the physics of microstructure selection is critical in the design of materials. Under terrestrial conditions fluid flow effects are dominant in bulk samples which preclude precise characterization of fundamental physics of microstructure selection. Experiments in thin samples, carried out to obtain diffusive growth, give microstructures that are neither 2D nor 3D. Rigorous theoretical models, using the phase-field method, have shown that the fundamental physics of pattern selection in 2D and 3D is significantly different. A benchmark experimental study is required in bulk samples under low gravity conditions. Also, the selection of microstructure occurs during the dynamical growth process so that in situ observations of spatio-temporal evolution of the interface shapes are required. Microgravity experiments on ISS are thus planned in a model transparent system by using a new Directional Solidification Insert (DSI), designed for use in the DECLIC facility of CNES and to be adapted to also fit ESA experiments. The critical aspects of hardware design, the key fundamental issues identified through 1g-experiments, the proposed experimental study on ISS, and the results of rigorous theoretical modeling are presented. More... »

PAGES

133

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02945963

DOI

http://dx.doi.org/10.1007/bf02945963

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020002633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trivedi", 
        "givenName": "Rohit", 
        "id": "sg:person.01125404132.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bergeon", 
        "givenName": "Nathalie", 
        "id": "sg:person.01342512515.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342512515.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Billia", 
        "givenName": "Bernard", 
        "id": "sg:person.012656550563.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656550563.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Echebarria", 
        "givenName": "Blas", 
        "id": "sg:person.0651320522.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651320522.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karma", 
        "givenName": "Alain", 
        "id": "sg:person.01213444131.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shan", 
        "id": "sg:person.015313245113.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangelinck", 
        "givenName": "Nathalie", 
        "id": "sg:person.010630572631.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630572631.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Facult\u00e9 Saint-J\u00e9r\u00f4me, Case 142, L2MP, Universit\u00e9 d\u2019Aix-Marseille III, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "C\u00e9dric", 
        "id": "sg:person.013470613233.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013470613233.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038630959", 
          "https://doi.org/10.1038/nmat749"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "Microstructure plays a central role in determining properties of materials so that the fundamental understanding of the physics of microstructure selection is critical in the design of materials. Under terrestrial conditions fluid flow effects are dominant in bulk samples which preclude precise characterization of fundamental physics of microstructure selection. Experiments in thin samples, carried out to obtain diffusive growth, give microstructures that are neither 2D nor 3D. Rigorous theoretical models, using the phase-field method, have shown that the fundamental physics of pattern selection in 2D and 3D is significantly different. A benchmark experimental study is required in bulk samples under low gravity conditions. Also, the selection of microstructure occurs during the dynamical growth process so that in situ observations of spatio-temporal evolution of the interface shapes are required. Microgravity experiments on ISS are thus planned in a model transparent system by using a new Directional Solidification Insert (DSI), designed for use in the DECLIC facility of CNES and to be adapted to also fit ESA experiments. The critical aspects of hardware design, the key fundamental issues identified through 1g-experiments, the proposed experimental study on ISS, and the results of rigorous theoretical modeling are presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02945963", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "Directional Solidification Insert", 
      "microstructure selection", 
      "fluid flow effects", 
      "phase-field method", 
      "model transparent system", 
      "low gravity conditions", 
      "model transparent alloy", 
      "properties of materials", 
      "benchmark experimental study", 
      "rigorous theoretical modeling", 
      "design of materials", 
      "dynamical growth process", 
      "DECLIC facility", 
      "experimental study", 
      "bulk samples", 
      "interface shape", 
      "transparent alloy", 
      "microgravity experiments", 
      "ESA experiments", 
      "directional solidification", 
      "gravity conditions", 
      "flow effects", 
      "microstructure occur", 
      "situ characterization", 
      "situ observations", 
      "microstructure", 
      "fundamental physics", 
      "fundamental understanding", 
      "rigorous theoretical model", 
      "diffusive growth", 
      "theoretical modeling", 
      "spatio-temporal evolution", 
      "growth process", 
      "key fundamental issues", 
      "thin samples", 
      "hardware design", 
      "materials", 
      "theoretical model", 
      "alloy", 
      "solidification", 
      "transparent system", 
      "design", 
      "CNES", 
      "experiments", 
      "characterization", 
      "critical aspects", 
      "modeling", 
      "properties", 
      "physics", 
      "fundamental issues", 
      "precise characterization", 
      "pattern selection", 
      "inserts", 
      "shape", 
      "process", 
      "facilities", 
      "conditions", 
      "ISS", 
      "system", 
      "method", 
      "samples", 
      "model", 
      "dynamics", 
      "occurs", 
      "results", 
      "selection", 
      "effect", 
      "evolution", 
      "observations", 
      "use", 
      "study", 
      "growth", 
      "issues", 
      "aspects", 
      "understanding", 
      "role", 
      "central role", 
      "terrestrial conditions fluid flow effects", 
      "conditions fluid flow effects", 
      "new Directional Solidification Insert", 
      "Solidification Insert", 
      "interface-microstructure dynamics"
    ], 
    "name": "In situ characterization of interface-microstructure dynamics in 3D-Directional Solidification of model transparent alloys", 
    "pagination": "133", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020002633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02945963"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02945963", 
      "https://app.dimensions.ai/details/publication/pub.1020002633"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02945963"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02945963'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02945963'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02945963'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02945963'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      22 PREDICATES      109 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02945963 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N394ca028d5a141078d45c7de940b8a01
4 schema:citation sg:pub.10.1038/nmat749
5 schema:datePublished 2005-03
6 schema:datePublishedReg 2005-03-01
7 schema:description Microstructure plays a central role in determining properties of materials so that the fundamental understanding of the physics of microstructure selection is critical in the design of materials. Under terrestrial conditions fluid flow effects are dominant in bulk samples which preclude precise characterization of fundamental physics of microstructure selection. Experiments in thin samples, carried out to obtain diffusive growth, give microstructures that are neither 2D nor 3D. Rigorous theoretical models, using the phase-field method, have shown that the fundamental physics of pattern selection in 2D and 3D is significantly different. A benchmark experimental study is required in bulk samples under low gravity conditions. Also, the selection of microstructure occurs during the dynamical growth process so that in situ observations of spatio-temporal evolution of the interface shapes are required. Microgravity experiments on ISS are thus planned in a model transparent system by using a new Directional Solidification Insert (DSI), designed for use in the DECLIC facility of CNES and to be adapted to also fit ESA experiments. The critical aspects of hardware design, the key fundamental issues identified through 1g-experiments, the proposed experimental study on ISS, and the results of rigorous theoretical modeling are presented.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N942ae88319e444698f3eb756a8403e6e
12 Nd70790625e8048d78bf71aca885cfa8a
13 sg:journal.1026232
14 schema:keywords CNES
15 DECLIC facility
16 Directional Solidification Insert
17 ESA experiments
18 ISS
19 Solidification Insert
20 alloy
21 aspects
22 benchmark experimental study
23 bulk samples
24 central role
25 characterization
26 conditions
27 conditions fluid flow effects
28 critical aspects
29 design
30 design of materials
31 diffusive growth
32 directional solidification
33 dynamical growth process
34 dynamics
35 effect
36 evolution
37 experimental study
38 experiments
39 facilities
40 flow effects
41 fluid flow effects
42 fundamental issues
43 fundamental physics
44 fundamental understanding
45 gravity conditions
46 growth
47 growth process
48 hardware design
49 inserts
50 interface shape
51 interface-microstructure dynamics
52 issues
53 key fundamental issues
54 low gravity conditions
55 materials
56 method
57 microgravity experiments
58 microstructure
59 microstructure occur
60 microstructure selection
61 model
62 model transparent alloy
63 model transparent system
64 modeling
65 new Directional Solidification Insert
66 observations
67 occurs
68 pattern selection
69 phase-field method
70 physics
71 precise characterization
72 process
73 properties
74 properties of materials
75 results
76 rigorous theoretical model
77 rigorous theoretical modeling
78 role
79 samples
80 selection
81 shape
82 situ characterization
83 situ observations
84 solidification
85 spatio-temporal evolution
86 study
87 system
88 terrestrial conditions fluid flow effects
89 theoretical model
90 theoretical modeling
91 thin samples
92 transparent alloy
93 transparent system
94 understanding
95 use
96 schema:name In situ characterization of interface-microstructure dynamics in 3D-Directional Solidification of model transparent alloys
97 schema:pagination 133
98 schema:productId N8caed385b70942e0875b37bd5daf3e4b
99 Nf28cc5b70b1b4815991150b7affc5ff0
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020002633
101 https://doi.org/10.1007/bf02945963
102 schema:sdDatePublished 2021-11-01T18:08
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nc01a2b902c914ab49d77901661d27a1b
105 schema:url https://doi.org/10.1007/bf02945963
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N184c0dcd38c0493aa078431b6d66adb0 rdf:first sg:person.010630572631.84
110 rdf:rest N6d11e898034447ad8909fb3678e95355
111 N394ca028d5a141078d45c7de940b8a01 rdf:first sg:person.01125404132.43
112 rdf:rest Nf3fc121e1ae948d28419f6e000d88d12
113 N4b60a499e6004f61bc1f74dba930c20a rdf:first sg:person.015313245113.30
114 rdf:rest N184c0dcd38c0493aa078431b6d66adb0
115 N555cebf5aa524560bf1b6925579f5874 rdf:first sg:person.01213444131.17
116 rdf:rest N4b60a499e6004f61bc1f74dba930c20a
117 N613fd1c1061f45228a67a552c729f610 rdf:first sg:person.012656550563.23
118 rdf:rest Nea7ccd28281145519dbe0a1f320294a6
119 N6d11e898034447ad8909fb3678e95355 rdf:first sg:person.013470613233.16
120 rdf:rest rdf:nil
121 N8caed385b70942e0875b37bd5daf3e4b schema:name dimensions_id
122 schema:value pub.1020002633
123 rdf:type schema:PropertyValue
124 N942ae88319e444698f3eb756a8403e6e schema:issueNumber 1-4
125 rdf:type schema:PublicationIssue
126 Nc01a2b902c914ab49d77901661d27a1b schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nd70790625e8048d78bf71aca885cfa8a schema:volumeNumber 16
129 rdf:type schema:PublicationVolume
130 Nea7ccd28281145519dbe0a1f320294a6 rdf:first sg:person.0651320522.29
131 rdf:rest N555cebf5aa524560bf1b6925579f5874
132 Nf28cc5b70b1b4815991150b7affc5ff0 schema:name doi
133 schema:value 10.1007/bf02945963
134 rdf:type schema:PropertyValue
135 Nf3fc121e1ae948d28419f6e000d88d12 rdf:first sg:person.01342512515.29
136 rdf:rest N613fd1c1061f45228a67a552c729f610
137 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
141 schema:name Other Physical Sciences
142 rdf:type schema:DefinedTerm
143 sg:journal.1026232 schema:issn 0938-0108
144 1875-0494
145 schema:name Microgravity Science and Technology
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.010630572631.84 schema:affiliation grid-institutes:grid.5399.6
149 schema:familyName Mangelinck
150 schema:givenName Nathalie
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630572631.84
152 rdf:type schema:Person
153 sg:person.01125404132.43 schema:affiliation grid-institutes:grid.34421.30
154 schema:familyName Trivedi
155 schema:givenName Rohit
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43
157 rdf:type schema:Person
158 sg:person.01213444131.17 schema:affiliation grid-institutes:grid.261112.7
159 schema:familyName Karma
160 schema:givenName Alain
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17
162 rdf:type schema:Person
163 sg:person.012656550563.23 schema:affiliation grid-institutes:grid.5399.6
164 schema:familyName Billia
165 schema:givenName Bernard
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656550563.23
167 rdf:type schema:Person
168 sg:person.01342512515.29 schema:affiliation grid-institutes:grid.5399.6
169 schema:familyName Bergeon
170 schema:givenName Nathalie
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342512515.29
172 rdf:type schema:Person
173 sg:person.013470613233.16 schema:affiliation grid-institutes:grid.5399.6
174 schema:familyName Weiss
175 schema:givenName Cédric
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013470613233.16
177 rdf:type schema:Person
178 sg:person.015313245113.30 schema:affiliation grid-institutes:grid.34421.30
179 schema:familyName Liu
180 schema:givenName Shan
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30
182 rdf:type schema:Person
183 sg:person.0651320522.29 schema:affiliation grid-institutes:grid.261112.7
184 schema:familyName Echebarria
185 schema:givenName Blas
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651320522.29
187 rdf:type schema:Person
188 sg:pub.10.1038/nmat749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630959
189 https://doi.org/10.1038/nmat749
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.261112.7 schema:alternateName Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA
192 schema:name Department of Physics, Northeastern University, 02115, Boston, Massachusetts, USA
193 rdf:type schema:Organization
194 grid-institutes:grid.34421.30 schema:alternateName Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA
195 schema:name Materials and Engineering Physics, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, 50011-3020, Ames, IA, USA
196 rdf:type schema:Organization
197 grid-institutes:grid.5399.6 schema:alternateName Faculté Saint-Jérôme, Case 142, L2MP, Université d’Aix-Marseille III, 13397, Marseille Cedex 20, France
198 schema:name Faculté Saint-Jérôme, Case 142, L2MP, Université d’Aix-Marseille III, 13397, Marseille Cedex 20, France
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...