An orientation update message filtering algorithm in collaborative virtual environments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

Mao-Jun Zhang, Nicolas D. Georganas

ABSTRACT

Orientation update message filtering is an important issue in collaborative virtual environments (CVEs). Dead-reckoning (DR) is a known effective mechanism for update message filtering. Yet, previous dead-reckoning techniques mainly focus on the update message filtering for positions. The existing orientation dead-reckoning algorithms are based on fixed threshold values. The drawbacks of fixed thresholding for orientations (FTO) are discussed in this paper. We propose a variable thresholding for orientations (VTO) based on average recent angular velocity. The main advantage of the proposed VTO is the ability of balancing the number of state update messages and shift frequency of direction and speed of rotation. More... »

PAGES

423-429

References to SciGraph publications

  • 2001-04. On Averaging Rotations in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02944912

    DOI

    http://dx.doi.org/10.1007/bf02944912

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008110071


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Software", 
              "id": "https://www.grid.ac/institutes/grid.458446.f", 
              "name": [
                "General Software Laboratory, Institute of Software, The Chinese Academy of Sciences, 100080, Beijing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Mao-Jun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "Discover Lab, SITE, University of Ottawa, Ottawa, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Georganas", 
            "givenName": "Nicolas D.", 
            "id": "sg:person.0671247226.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671247226.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/238386.238404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000569583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/169059.169268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010100092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011129215388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010674240", 
              "https://doi.org/10.1023/a:1011129215388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/218380.218486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023693146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/253437.253451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037666478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/pres.1995.4.2.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043692401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/299246.299287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045416318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/289444.289496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045808144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-3664(01)00321-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046308196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vrais.1993.380753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086301340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pads.1999.766164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093649961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsmc.2001.973069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093706808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/distra.2001.946442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095465672"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-05", 
        "datePublishedReg": "2004-05-01", 
        "description": "Orientation update message filtering is an important issue in collaborative virtual environments (CVEs). Dead-reckoning (DR) is a known effective mechanism for update message filtering. Yet, previous dead-reckoning techniques mainly focus on the update message filtering for positions. The existing orientation dead-reckoning algorithms are based on fixed threshold values. The drawbacks of fixed thresholding for orientations (FTO) are discussed in this paper. We propose a variable thresholding for orientations (VTO) based on average recent angular velocity. The main advantage of the proposed VTO is the ability of balancing the number of state update messages and shift frequency of direction and speed of rotation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02944912", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320078", 
            "issn": [
              "1666-6046", 
              "1666-6038"
            ], 
            "name": "Journal of Computer Science and Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "An orientation update message filtering algorithm in collaborative virtual environments", 
        "pagination": "423-429", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "26a2fe62eb762be211eb21dda39d70510b26a4eb6f6c0a9e16fe764e4473071b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02944912"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008110071"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02944912", 
          "https://app.dimensions.ai/details/publication/pub.1008110071"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02944912"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02944912'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02944912'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02944912'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02944912'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02944912 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nee1836e9a16f496bbdca8fee782636a4
    4 schema:citation sg:pub.10.1023/a:1011129215388
    5 https://doi.org/10.1016/s0140-3664(01)00321-8
    6 https://doi.org/10.1109/distra.2001.946442
    7 https://doi.org/10.1109/icsmc.2001.973069
    8 https://doi.org/10.1109/pads.1999.766164
    9 https://doi.org/10.1109/vrais.1993.380753
    10 https://doi.org/10.1145/169059.169268
    11 https://doi.org/10.1145/218380.218486
    12 https://doi.org/10.1145/238386.238404
    13 https://doi.org/10.1145/253437.253451
    14 https://doi.org/10.1145/289444.289496
    15 https://doi.org/10.1145/299246.299287
    16 https://doi.org/10.1162/pres.1995.4.2.169
    17 schema:datePublished 2004-05
    18 schema:datePublishedReg 2004-05-01
    19 schema:description Orientation update message filtering is an important issue in collaborative virtual environments (CVEs). Dead-reckoning (DR) is a known effective mechanism for update message filtering. Yet, previous dead-reckoning techniques mainly focus on the update message filtering for positions. The existing orientation dead-reckoning algorithms are based on fixed threshold values. The drawbacks of fixed thresholding for orientations (FTO) are discussed in this paper. We propose a variable thresholding for orientations (VTO) based on average recent angular velocity. The main advantage of the proposed VTO is the ability of balancing the number of state update messages and shift frequency of direction and speed of rotation.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N188cb67ff23a4adab44dbfb941e3b4cf
    24 N6841138df3694b509dbcdf1f58359931
    25 sg:journal.1320078
    26 schema:name An orientation update message filtering algorithm in collaborative virtual environments
    27 schema:pagination 423-429
    28 schema:productId Nc9f1bb74e82b419f9575780e00023464
    29 Ne2ddf57acc4c45d8b8e4874a8718edd0
    30 Ne5817d14afdc479688845b938658161c
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008110071
    32 https://doi.org/10.1007/bf02944912
    33 schema:sdDatePublished 2019-04-11T14:29
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N6a9558abb16d4222969143240b50d4b0
    36 schema:url http://link.springer.com/10.1007%2FBF02944912
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N188cb67ff23a4adab44dbfb941e3b4cf schema:issueNumber 3
    41 rdf:type schema:PublicationIssue
    42 N31141b8231a24c7bb6f547d3c2759ed0 rdf:first sg:person.0671247226.24
    43 rdf:rest rdf:nil
    44 N6841138df3694b509dbcdf1f58359931 schema:volumeNumber 19
    45 rdf:type schema:PublicationVolume
    46 N6a9558abb16d4222969143240b50d4b0 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Na87cd0aef02e49a1bbe1cf4d5194864e schema:affiliation https://www.grid.ac/institutes/grid.458446.f
    49 schema:familyName Zhang
    50 schema:givenName Mao-Jun
    51 rdf:type schema:Person
    52 Nc9f1bb74e82b419f9575780e00023464 schema:name readcube_id
    53 schema:value 26a2fe62eb762be211eb21dda39d70510b26a4eb6f6c0a9e16fe764e4473071b
    54 rdf:type schema:PropertyValue
    55 Ne2ddf57acc4c45d8b8e4874a8718edd0 schema:name dimensions_id
    56 schema:value pub.1008110071
    57 rdf:type schema:PropertyValue
    58 Ne5817d14afdc479688845b938658161c schema:name doi
    59 schema:value 10.1007/bf02944912
    60 rdf:type schema:PropertyValue
    61 Nee1836e9a16f496bbdca8fee782636a4 rdf:first Na87cd0aef02e49a1bbe1cf4d5194864e
    62 rdf:rest N31141b8231a24c7bb6f547d3c2759ed0
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Artificial Intelligence and Image Processing
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1320078 schema:issn 1666-6038
    70 1666-6046
    71 schema:name Journal of Computer Science and Technology
    72 rdf:type schema:Periodical
    73 sg:person.0671247226.24 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    74 schema:familyName Georganas
    75 schema:givenName Nicolas D.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671247226.24
    77 rdf:type schema:Person
    78 sg:pub.10.1023/a:1011129215388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010674240
    79 https://doi.org/10.1023/a:1011129215388
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/s0140-3664(01)00321-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046308196
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1109/distra.2001.946442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095465672
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1109/icsmc.2001.973069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093706808
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1109/pads.1999.766164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093649961
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1109/vrais.1993.380753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086301340
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1145/169059.169268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010100092
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1145/218380.218486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023693146
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1145/238386.238404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000569583
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1145/253437.253451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037666478
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1145/289444.289496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045808144
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1145/299246.299287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045416318
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1162/pres.1995.4.2.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043692401
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
    106 schema:name Discover Lab, SITE, University of Ottawa, Ottawa, Canada
    107 rdf:type schema:Organization
    108 https://www.grid.ac/institutes/grid.458446.f schema:alternateName Institute of Software
    109 schema:name General Software Laboratory, Institute of Software, The Chinese Academy of Sciences, 100080, Beijing, P.R. China
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...