Projective representations i. projective lines over rings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-12

AUTHORS

Andrea Blunck, Hans Havlicek

ABSTRACT

We discuss representations of the projective line over a ringR with 1 in a projective space over some (not necessarily commutative) fieldK. Such a representation is based upon a (K, R)-bimoduleU. The points of the projective line overR are represented by certain subspaces of the projective space ℙ(K, U ×U) that are isomorphic to one of their complements. In particular, distant points go over to complementary subspaces, but in certain cases, also non-distant points may have complementary images. More... »

PAGES

287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02940921

DOI

http://dx.doi.org/10.1007/bf02940921

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037915995


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Geometrie, Technische Universit\u00e4t, Wiedner Hauptstra\u00dfe 8-10, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Geometrie, Technische Universit\u00e4t, Wiedner Hauptstra\u00dfe 8-10, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blunck", 
        "givenName": "Andrea", 
        "id": "sg:person.015466633613.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466633613.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Geometrie, Technische Universit\u00e4t, Wiedner Hauptstra\u00dfe 8-10, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Geometrie, Technische Universit\u00e4t, Wiedner Hauptstra\u00dfe 8-10, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Havlicek", 
        "givenName": "Hans", 
        "id": "sg:person.013174651533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174651533.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-0406-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011993377", 
          "https://doi.org/10.1007/978-1-4684-0406-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051269294", 
          "https://doi.org/10.1007/978-3-642-88670-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5460-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046423687", 
          "https://doi.org/10.1007/978-94-009-5460-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5460-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050775217", 
          "https://doi.org/10.1007/978-94-009-5460-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02953329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040354", 
          "https://doi.org/10.1007/bf02953329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-13152-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009595379", 
          "https://doi.org/10.1007/978-3-662-13152-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00221202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020666016", 
          "https://doi.org/10.1007/bf00221202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01610624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048279205", 
          "https://doi.org/10.1007/bf01610624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-12", 
    "datePublishedReg": "2000-12-01", 
    "description": "We discuss representations of the projective line over a ringR with 1 in a projective space over some (not necessarily commutative) fieldK. Such a representation is based upon a (K, R)-bimoduleU. The points of the projective line overR are represented by certain subspaces of the projective space \u2119(K, U \u00d7U) that are isomorphic to one of their complements. In particular, distant points go over to complementary subspaces, but in certain cases, also non-distant points may have complementary images.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02940921", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136843", 
        "issn": [
          "0025-5858", 
          "1865-8784"
        ], 
        "name": "Abhandlungen aus dem Mathematischen Seminar der Universit\u00e4t Hamburg", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "keywords": [
      "representation", 
      "space", 
      "projective line", 
      "projective space", 
      "point", 
      "certain subspaces", 
      "images", 
      "complementary subspace", 
      "projective representations", 
      "subspace", 
      "lines", 
      "fieldK.", 
      "overR", 
      "complement", 
      "certain cases", 
      "ringR", 
      "distant points", 
      "cases", 
      "ring", 
      "projective line overR", 
      "line overR", 
      "non-distant points", 
      "complementary images"
    ], 
    "name": "Projective representations i. projective lines over rings", 
    "pagination": "287", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037915995"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02940921"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02940921", 
      "https://app.dimensions.ai/details/publication/pub.1037915995"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_338.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02940921"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02940921'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02940921'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02940921'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02940921'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      57 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02940921 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8e789811ca05448ab1b9395a60e977f1
4 schema:citation sg:pub.10.1007/978-1-4684-0406-7
5 sg:pub.10.1007/978-3-642-88670-6
6 sg:pub.10.1007/978-3-662-13152-7
7 sg:pub.10.1007/978-94-009-5460-1_10
8 sg:pub.10.1007/978-94-009-5460-1_6
9 sg:pub.10.1007/bf00221202
10 sg:pub.10.1007/bf01610624
11 sg:pub.10.1007/bf02953329
12 schema:datePublished 2000-12
13 schema:datePublishedReg 2000-12-01
14 schema:description We discuss representations of the projective line over a ringR with 1 in a projective space over some (not necessarily commutative) fieldK. Such a representation is based upon a (K, R)-bimoduleU. The points of the projective line overR are represented by certain subspaces of the projective space ℙ(K, U ×U) that are isomorphic to one of their complements. In particular, distant points go over to complementary subspaces, but in certain cases, also non-distant points may have complementary images.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N4ebfb53082184607b469729c389694c1
19 Ndba95f287a6e4c379519e37fdf16bb7b
20 sg:journal.1136843
21 schema:keywords cases
22 certain cases
23 certain subspaces
24 complement
25 complementary images
26 complementary subspace
27 distant points
28 fieldK.
29 images
30 line overR
31 lines
32 non-distant points
33 overR
34 point
35 projective line
36 projective line overR
37 projective representations
38 projective space
39 representation
40 ring
41 ringR
42 space
43 subspace
44 schema:name Projective representations i. projective lines over rings
45 schema:pagination 287
46 schema:productId N5bcda27a6fd548c5b42c339974209f53
47 Na64f89fe51c44b5dbd7e403fc7274910
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037915995
49 https://doi.org/10.1007/bf02940921
50 schema:sdDatePublished 2021-12-01T19:12
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N6d2e1475b44c4a368eafa418de7d9da7
53 schema:url https://doi.org/10.1007/bf02940921
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N4ebfb53082184607b469729c389694c1 schema:volumeNumber 70
58 rdf:type schema:PublicationVolume
59 N5bcda27a6fd548c5b42c339974209f53 schema:name doi
60 schema:value 10.1007/bf02940921
61 rdf:type schema:PropertyValue
62 N6d2e1475b44c4a368eafa418de7d9da7 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N7858dfb496024f50b62c4d766a1b5dc6 rdf:first sg:person.013174651533.83
65 rdf:rest rdf:nil
66 N8e789811ca05448ab1b9395a60e977f1 rdf:first sg:person.015466633613.22
67 rdf:rest N7858dfb496024f50b62c4d766a1b5dc6
68 Na64f89fe51c44b5dbd7e403fc7274910 schema:name dimensions_id
69 schema:value pub.1037915995
70 rdf:type schema:PropertyValue
71 Ndba95f287a6e4c379519e37fdf16bb7b schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136843 schema:issn 0025-5858
80 1865-8784
81 schema:name Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.013174651533.83 schema:affiliation grid-institutes:grid.5329.d
85 schema:familyName Havlicek
86 schema:givenName Hans
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174651533.83
88 rdf:type schema:Person
89 sg:person.015466633613.22 schema:affiliation grid-institutes:grid.5329.d
90 schema:familyName Blunck
91 schema:givenName Andrea
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466633613.22
93 rdf:type schema:Person
94 sg:pub.10.1007/978-1-4684-0406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993377
95 https://doi.org/10.1007/978-1-4684-0406-7
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-642-88670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051269294
98 https://doi.org/10.1007/978-3-642-88670-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-662-13152-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009595379
101 https://doi.org/10.1007/978-3-662-13152-7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-94-009-5460-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050775217
104 https://doi.org/10.1007/978-94-009-5460-1_10
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-94-009-5460-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046423687
107 https://doi.org/10.1007/978-94-009-5460-1_6
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00221202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020666016
110 https://doi.org/10.1007/bf00221202
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01610624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048279205
113 https://doi.org/10.1007/bf01610624
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02953329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052040354
116 https://doi.org/10.1007/bf02953329
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.5329.d schema:alternateName Institut für Geometrie, Technische Universität, Wiedner Hauptstraße 8-10, A-1040, Wien, Austria
119 schema:name Institut für Geometrie, Technische Universität, Wiedner Hauptstraße 8-10, A-1040, Wien, Austria
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...