A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiolsulfonate groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-11

AUTHORS

Francisco Batista-Viera, Mariela Barbieri, Karen Ovsejevi, Carmen Manta, Jan Carlsson

ABSTRACT

A new method for the reversible immobilization of thiol bimolecules, e.g., thiolpeptides and thiolproteins, to beaded agarose and other solid phases is reported. The method consists of an activation and a coupling step. The activation is based on oxidation of disulfides (or thiol groups via disulfides) present in a solid phase by hydrogen peroxide at moderately acidic pH. This oxidation leads to disulfide oxides (thiolsulfinate groups of which the majority are further oxidized to thiolsulfonate). The thiolsulfonate groups react easily with thiol compounds, which become immobilized via disulfide bonds. The pH range for thiol coupling is wide (pH 5-8), but for most thiols the reaction seems to proceed faster at pH>7. The stability of the reactive group to hydrolysis, especially at neutral and weakly acidic pH, is very high. The activated gel, therefore, can be stored as a suspension at pH 5 for extended periods. The method has been used to reversibly immobilize glutathione, β-galactosidase, alcohol dehydrogenase, urease, and papain, all with exposed thiol groups as well as thiolated bovine serum albumin and sweet-potato β-amylase. Depending on the thiol content of starting thiol-agarose, thiol-sulfonate-agarose derivatives with different binding capacities can be obtained. Thus, up to 5.0 mg (16 μmol) glutathione and 15 mg thiol-protein/mL gel derivative have been immobilized. The gel bead can be regenerated and reused at least twice. Besides agarose, cellulose, crosslinked dextran, and polyacrylamide were shown to be very suitable as supports for solid-phase thiolsulfonates. More... »

PAGES

175-195

Journal

TITLE

Applied Biochemistry and Biotechnology

ISSUE

2

VOLUME

31

Author Affiliations

Related Patents

  • Dna Diagnostics Based On Mass Spectrometry
  • Primers Useful For Sizing Nucleic Acids
  • Use Of Disulfide Bonds To Form A Reversible And Reusable Coating For Nanofluidic Devices
  • Ir-Maldi Mass Spectrometry Of Nucleic Acids Using Liquid Matrices
  • Releasable Nonvolatile Mass Label Molecules
  • Integrated Robotic Sample Transfer Device
  • Releasable Nonvolatile Mass-Label Molecules
  • Solid Phase Sequencing Of Biopolymers
  • Systems And Methods For Preparing And Analyzing Low Volume Analyte Array Elements
  • Methods Of Preparing Nucleic Acids For Mass Spectrometric Analysis
  • Systems And Methods For Preparing Low Volume Analyte Array Elements
  • Mass Spectrometric Methods For Sequencing Nucleic Acids
  • Dna Sequencing By Mass Spectrometry Via Exonuclease Degradation
  • Systems And Methods For Preparing And Analyzing Low Volume Analyte Array Elements
  • Method And Apparatus For Delivery Of Submicroliter Volumes Onto A Substrate
  • Method And Apparatus For Delivery Of Submicroliter Volumes Onto A Substrate
  • Beads Bound To A Solid Support And To Nucleic Acids
  • Releasable Nonvolatile Mass-Label Molecules
  • Ir Maldi Mass Spectrometry Of Nucleic Acids Using Liquid Matrices
  • Beads Bound To A Solid Support And To Nucleic Acids
  • Solution Phase Biopolymer Synthesis
  • Solution Phase Biopolymer Synthesis
  • Arrays Of Probes For Positional Sequencing By Hybridization
  • Beads Bound To A Solid Support And To Nucleic Acids
  • Dna Diagnostics Based On Mass Spectrometry
  • Methods Of Screening Nucleic Acids Using Volatile Salts In Mass Spectrometry
  • Use Of Nucleotide Analogs In The Analysis Of Oligonucleotide Mixtures And In Highly Multiplexed Nucleic Acid Sequencing
  • Use Of Disulfide Bonds To Form A Reversible And Reusable Coating For Nanofluidic Devices
  • Solid Phase Sequencing Of Double-Stranded Nucleic Acids
  • High Density Immobilization Of Nucleic Acids
  • Mass Spectrometric Methods For Detecting Mutations In A Target Nucleic Acid
  • Dna Diagnostics Based On Mass Spectrometry
  • Solid Phase Sequencing Of Biopolymers
  • Use Of Disulfide Bonds To Form A Reversible And Reusable Coating For Nanofluidic Devices
  • Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Substrates Having Low Volume Matrix Array Elements
  • Infrared Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Of Macromolecules
  • High Density Immobilization Of Nucleic Acids
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02921788

    DOI

    http://dx.doi.org/10.1007/bf02921788

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052567355


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "C\u00e1tedra de Bioqu\u00edmica, Facultad de Qu\u00edmica, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Batista-Viera", 
            "givenName": "Francisco", 
            "id": "sg:person.071654257.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.071654257.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "C\u00e1tedra de Bioqu\u00edmica, Facultad de Qu\u00edmica, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barbieri", 
            "givenName": "Mariela", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "C\u00e1tedra de Bioqu\u00edmica, Facultad de Qu\u00edmica, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ovsejevi", 
            "givenName": "Karen", 
            "id": "sg:person.01204154025.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204154025.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "C\u00e1tedra de Bioqu\u00edmica, Facultad de Qu\u00edmica, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manta", 
            "givenName": "Carmen", 
            "id": "sg:person.0677362351.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677362351.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thermo Fisher Scientific (Sweden)", 
              "id": "https://www.grid.ac/institutes/grid.420150.2", 
              "name": [
                "Research and Development, Pharmacia Diagnostics AB, S-751 82, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carlsson", 
            "givenName": "Jan", 
            "id": "sg:person.012114745571.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012114745571.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0003-2670(59)80114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000592807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/o80-086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000593876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1432-1033.1983.tb07354.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001165495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1330067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008252854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1330067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008252854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9673(00)81413-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021909308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(77)80974-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1330573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031349241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1330573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031349241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1432-1033.1974.tb03472.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031484846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1730723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037949966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj1730723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037949966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.41.6.327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039608286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-2697(89)90318-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045226585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0003-2670(01)95459-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048026962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(55)01021-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049421947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(74)80781-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052500430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00675a019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055184901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jo00982a018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055994332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3891/acta.chem.scand.29b-0471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071496369"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-11", 
        "datePublishedReg": "1991-11-01", 
        "description": "A new method for the reversible immobilization of thiol bimolecules, e.g., thiolpeptides and thiolproteins, to beaded agarose and other solid phases is reported. The method consists of an activation and a coupling step. The activation is based on oxidation of disulfides (or thiol groups via disulfides) present in a solid phase by hydrogen peroxide at moderately acidic pH. This oxidation leads to disulfide oxides (thiolsulfinate groups of which the majority are further oxidized to thiolsulfonate). The thiolsulfonate groups react easily with thiol compounds, which become immobilized via disulfide bonds. The pH range for thiol coupling is wide (pH 5-8), but for most thiols the reaction seems to proceed faster at pH>7. The stability of the reactive group to hydrolysis, especially at neutral and weakly acidic pH, is very high. The activated gel, therefore, can be stored as a suspension at pH 5 for extended periods. The method has been used to reversibly immobilize glutathione, \u03b2-galactosidase, alcohol dehydrogenase, urease, and papain, all with exposed thiol groups as well as thiolated bovine serum albumin and sweet-potato \u03b2-amylase. Depending on the thiol content of starting thiol-agarose, thiol-sulfonate-agarose derivatives with different binding capacities can be obtained. Thus, up to 5.0 mg (16 \u03bcmol) glutathione and 15 mg thiol-protein/mL gel derivative have been immobilized. The gel bead can be regenerated and reused at least twice. Besides agarose, cellulose, crosslinked dextran, and polyacrylamide were shown to be very suitable as supports for solid-phase thiolsulfonates.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02921788", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1086169", 
            "issn": [
              "0273-2289", 
              "1559-0291"
            ], 
            "name": "Applied Biochemistry and Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiolsulfonate groups", 
        "pagination": "175-195", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fa654b573675466a157a1346290acb934f62e825a24acbbf60f337f2acec24e6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02921788"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052567355"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02921788", 
          "https://app.dimensions.ai/details/publication/pub.1052567355"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02921788"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02921788'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02921788'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02921788'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02921788'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02921788 schema:about anzsrc-for:03
    2 anzsrc-for:0399
    3 schema:author N34e0440f907547a5b50302feee82436a
    4 schema:citation https://doi.org/10.1016/0003-2670(59)80114-8
    5 https://doi.org/10.1016/0003-2697(89)90318-7
    6 https://doi.org/10.1016/0014-5793(74)80781-7
    7 https://doi.org/10.1016/0014-5793(77)80974-5
    8 https://doi.org/10.1016/0076-6879(55)01021-5
    9 https://doi.org/10.1016/s0003-2670(01)95459-5
    10 https://doi.org/10.1016/s0021-9673(00)81413-2
    11 https://doi.org/10.1021/bi00675a019
    12 https://doi.org/10.1021/jo00982a018
    13 https://doi.org/10.1042/bj1330067
    14 https://doi.org/10.1042/bj1330573
    15 https://doi.org/10.1042/bj1730723
    16 https://doi.org/10.1073/pnas.41.6.327
    17 https://doi.org/10.1111/j.1432-1033.1974.tb03472.x
    18 https://doi.org/10.1111/j.1432-1033.1983.tb07354.x
    19 https://doi.org/10.1139/o80-086
    20 https://doi.org/10.3891/acta.chem.scand.29b-0471
    21 schema:datePublished 1991-11
    22 schema:datePublishedReg 1991-11-01
    23 schema:description A new method for the reversible immobilization of thiol bimolecules, e.g., thiolpeptides and thiolproteins, to beaded agarose and other solid phases is reported. The method consists of an activation and a coupling step. The activation is based on oxidation of disulfides (or thiol groups via disulfides) present in a solid phase by hydrogen peroxide at moderately acidic pH. This oxidation leads to disulfide oxides (thiolsulfinate groups of which the majority are further oxidized to thiolsulfonate). The thiolsulfonate groups react easily with thiol compounds, which become immobilized via disulfide bonds. The pH range for thiol coupling is wide (pH 5-8), but for most thiols the reaction seems to proceed faster at pH>7. The stability of the reactive group to hydrolysis, especially at neutral and weakly acidic pH, is very high. The activated gel, therefore, can be stored as a suspension at pH 5 for extended periods. The method has been used to reversibly immobilize glutathione, β-galactosidase, alcohol dehydrogenase, urease, and papain, all with exposed thiol groups as well as thiolated bovine serum albumin and sweet-potato β-amylase. Depending on the thiol content of starting thiol-agarose, thiol-sulfonate-agarose derivatives with different binding capacities can be obtained. Thus, up to 5.0 mg (16 μmol) glutathione and 15 mg thiol-protein/mL gel derivative have been immobilized. The gel bead can be regenerated and reused at least twice. Besides agarose, cellulose, crosslinked dextran, and polyacrylamide were shown to be very suitable as supports for solid-phase thiolsulfonates.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N549fa805bc014317ae42502131f258b2
    28 Nbe4713c8e21c4766b21b9f93a61501f6
    29 sg:journal.1086169
    30 schema:name A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiolsulfonate groups
    31 schema:pagination 175-195
    32 schema:productId N10e8b19f34264295b1979dea73c203d3
    33 N8362a1e4207142a88116820e7a8711c1
    34 Ne673f406e52a493686885b0a71ed85a3
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052567355
    36 https://doi.org/10.1007/bf02921788
    37 schema:sdDatePublished 2019-04-11T14:00
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N67a7869eb45f4c6785bcd3752818ec59
    40 schema:url http://link.springer.com/10.1007/BF02921788
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0715cb29c3824b2396193bcb3520f976 rdf:first sg:person.01204154025.99
    45 rdf:rest Na94d9eeb57cf4268809343ecb7d67285
    46 N0d2a1a29175f40cba47870a8d9fcd8ec rdf:first sg:person.012114745571.32
    47 rdf:rest rdf:nil
    48 N10e8b19f34264295b1979dea73c203d3 schema:name readcube_id
    49 schema:value fa654b573675466a157a1346290acb934f62e825a24acbbf60f337f2acec24e6
    50 rdf:type schema:PropertyValue
    51 N34e0440f907547a5b50302feee82436a rdf:first sg:person.071654257.44
    52 rdf:rest Na71c59b817bc41f4ae0b31d751fc724a
    53 N549fa805bc014317ae42502131f258b2 schema:issueNumber 2
    54 rdf:type schema:PublicationIssue
    55 N67a7869eb45f4c6785bcd3752818ec59 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N8362a1e4207142a88116820e7a8711c1 schema:name dimensions_id
    58 schema:value pub.1052567355
    59 rdf:type schema:PropertyValue
    60 N99e88aa546ad405e90603c774253700b schema:name Cátedra de Bioquímica, Facultad de Química, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay
    61 rdf:type schema:Organization
    62 Na71c59b817bc41f4ae0b31d751fc724a rdf:first Nc0470e896f1e4e33a6c1801ddaf3a2bd
    63 rdf:rest N0715cb29c3824b2396193bcb3520f976
    64 Na94d9eeb57cf4268809343ecb7d67285 rdf:first sg:person.0677362351.76
    65 rdf:rest N0d2a1a29175f40cba47870a8d9fcd8ec
    66 Nbe4713c8e21c4766b21b9f93a61501f6 schema:volumeNumber 31
    67 rdf:type schema:PublicationVolume
    68 Nc0470e896f1e4e33a6c1801ddaf3a2bd schema:affiliation Ne947966807f54ad3b0a0fee0fe2e8395
    69 schema:familyName Barbieri
    70 schema:givenName Mariela
    71 rdf:type schema:Person
    72 Nda1c92eb49d64eb2b3784996c25f5141 schema:name Cátedra de Bioquímica, Facultad de Química, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay
    73 rdf:type schema:Organization
    74 Ne673f406e52a493686885b0a71ed85a3 schema:name doi
    75 schema:value 10.1007/bf02921788
    76 rdf:type schema:PropertyValue
    77 Ne947966807f54ad3b0a0fee0fe2e8395 schema:name Cátedra de Bioquímica, Facultad de Química, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay
    78 rdf:type schema:Organization
    79 Nf89879be481740059a99d73550013270 schema:name Cátedra de Bioquímica, Facultad de Química, Gral. Flores 2124, Casilla de Correo 1157, Montevideo, Uruguay
    80 rdf:type schema:Organization
    81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Chemical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Other Chemical Sciences
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1086169 schema:issn 0273-2289
    88 1559-0291
    89 schema:name Applied Biochemistry and Biotechnology
    90 rdf:type schema:Periodical
    91 sg:person.01204154025.99 schema:affiliation Nf89879be481740059a99d73550013270
    92 schema:familyName Ovsejevi
    93 schema:givenName Karen
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204154025.99
    95 rdf:type schema:Person
    96 sg:person.012114745571.32 schema:affiliation https://www.grid.ac/institutes/grid.420150.2
    97 schema:familyName Carlsson
    98 schema:givenName Jan
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012114745571.32
    100 rdf:type schema:Person
    101 sg:person.0677362351.76 schema:affiliation N99e88aa546ad405e90603c774253700b
    102 schema:familyName Manta
    103 schema:givenName Carmen
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677362351.76
    105 rdf:type schema:Person
    106 sg:person.071654257.44 schema:affiliation Nda1c92eb49d64eb2b3784996c25f5141
    107 schema:familyName Batista-Viera
    108 schema:givenName Francisco
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.071654257.44
    110 rdf:type schema:Person
    111 https://doi.org/10.1016/0003-2670(59)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000592807
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0003-2697(89)90318-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045226585
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0014-5793(74)80781-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500430
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0014-5793(77)80974-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952432
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0076-6879(55)01021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049421947
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0003-2670(01)95459-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048026962
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0021-9673(00)81413-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021909308
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1021/bi00675a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055184901
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1021/jo00982a018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055994332
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1042/bj1330067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008252854
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1042/bj1330573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349241
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1042/bj1730723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037949966
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1073/pnas.41.6.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039608286
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1111/j.1432-1033.1974.tb03472.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031484846
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1111/j.1432-1033.1983.tb07354.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001165495
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1139/o80-086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000593876
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.3891/acta.chem.scand.29b-0471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071496369
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.420150.2 schema:alternateName Thermo Fisher Scientific (Sweden)
    146 schema:name Research and Development, Pharmacia Diagnostics AB, S-751 82, Uppsala, Sweden
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...