Zeta and eta functions for Atiyah-Patodi-Singer operators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-03

AUTHORS

Gerd Grubb, Robert T. Seeley

ABSTRACT

This paper concerns Dirac-type operatorsP on manifoldsX with boundary which are “product-type” near the boundary. That is, for a unitary morphism σ and a self-adjoint first-order operatorA onbdry(X);xn denotes the normal coordinate. For a realizationPB defined by a boundary operatorB of Atiyah-Patodi-Singer type, the paper gives a complete description of the singularities of the traces of the meromorphic continuations of Γ(s)D(Δi)−s and Γ(s)DP(Δi)−s where Δ1 =PB*PB, Δ2 =PBPB*, andD is any differential operator onX which is tangential and independent of 4xn nearbdry(X). This implies expansions for the associated heat kernels and resolvents, containing the usual powers (with both “local” and “global” coefficients) together with logarithmic terms. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02921566

DOI

http://dx.doi.org/10.1007/bf02921566

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043165353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Mathematics, University of Copenhagen, Denmark", 
            "Department of Mathematics, University of Massachussetts at Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grubb", 
        "givenName": "Gerd", 
        "id": "sg:person.014712433355.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712433355.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Mathematics, University of Copenhagen, Denmark", 
            "Department of Mathematics, University of Massachussetts at Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeley", 
        "givenName": "Robert T.", 
        "id": "sg:person.010613323412.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613323412.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01884310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004127512", 
          "https://doi.org/10.1007/bf01884310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01884310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004127512", 
          "https://doi.org/10.1007/bf01884310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0769-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459148", 
          "https://doi.org/10.1007/978-1-4612-0769-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0769-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459148", 
          "https://doi.org/10.1007/978-1-4612-0769-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008349395", 
          "https://doi.org/10.1007/bf01206955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008349395", 
          "https://doi.org/10.1007/bf01206955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01405172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028796555", 
          "https://doi.org/10.1007/bf01405172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01405172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028796555", 
          "https://doi.org/10.1007/bf01405172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029974263", 
          "https://doi.org/10.1007/bf00276190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029974263", 
          "https://doi.org/10.1007/bf00276190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100049410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030718898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309208820913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032316300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(92)90146-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160360105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040205371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160360105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040205371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046299984", 
          "https://doi.org/10.1007/bf02099174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1949-021-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072263678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/010/0237943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089193191"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "This paper concerns Dirac-type operatorsP on manifoldsX with boundary which are \u201cproduct-type\u201d near the boundary. That is, for a unitary morphism \u03c3 and a self-adjoint first-order operatorA onbdry(X);xn denotes the normal coordinate. For a realizationPB defined by a boundary operatorB of Atiyah-Patodi-Singer type, the paper gives a complete description of the singularities of the traces of the meromorphic continuations of \u0393(s)D(\u0394i)\u2212s and \u0393(s)DP(\u0394i)\u2212s where \u03941 =PB*PB, \u03942 =PBPB*, andD is any differential operator onX which is tangential and independent of 4xn nearbdry(X). This implies expansions for the associated heat kernels and resolvents, containing the usual powers (with both \u201clocal\u201d and \u201cglobal\u201d coefficients) together with logarithmic terms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02921566", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136350", 
        "issn": [
          "1050-6926", 
          "1559-002X"
        ], 
        "name": "The Journal of Geometric Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Zeta and eta functions for Atiyah-Patodi-Singer operators", 
    "pagination": "31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd9c5e1cac4dfc44cb67b3359cc43c61f5ea1a05ed16bc7d9250a2a773951b70"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02921566"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043165353"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02921566", 
      "https://app.dimensions.ai/details/publication/pub.1043165353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02921566"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02921566'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02921566'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02921566'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02921566'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02921566 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N06ca3f2d2cf2483e812b2f63ae01aa2e
4 schema:citation sg:pub.10.1007/978-1-4612-0769-6
5 sg:pub.10.1007/bf00276190
6 sg:pub.10.1007/bf01206955
7 sg:pub.10.1007/bf01405172
8 sg:pub.10.1007/bf01884310
9 sg:pub.10.1007/bf02099174
10 https://doi.org/10.1002/cpa.3160360105
11 https://doi.org/10.1016/0022-1236(92)90146-a
12 https://doi.org/10.1017/s0305004100049410
13 https://doi.org/10.1080/03605309208820913
14 https://doi.org/10.1090/pspum/010/0237943
15 https://doi.org/10.4153/cjm-1949-021-5
16 schema:datePublished 1996-03
17 schema:datePublishedReg 1996-03-01
18 schema:description This paper concerns Dirac-type operatorsP on manifoldsX with boundary which are “product-type” near the boundary. That is, for a unitary morphism σ and a self-adjoint first-order operatorA onbdry(X);xn denotes the normal coordinate. For a realizationPB defined by a boundary operatorB of Atiyah-Patodi-Singer type, the paper gives a complete description of the singularities of the traces of the meromorphic continuations of Γ(s)D(Δi)−s and Γ(s)DP(Δi)−s where Δ1 =PB*PB, Δ2 =PBPB*, andD is any differential operator onX which is tangential and independent of 4xn nearbdry(X). This implies expansions for the associated heat kernels and resolvents, containing the usual powers (with both “local” and “global” coefficients) together with logarithmic terms.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N290b17683060495ba5f9ae71d24814ac
23 N822be88e024b4604b2e8fc159840631a
24 sg:journal.1136350
25 schema:name Zeta and eta functions for Atiyah-Patodi-Singer operators
26 schema:pagination 31
27 schema:productId N52478b9a8cd347ea8a414e9085fc3cbb
28 N70e6e86f7ec9452ebe1663edc8aa12cb
29 N91ca4a2965104a7c8678ae7fd7a6afeb
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043165353
31 https://doi.org/10.1007/bf02921566
32 schema:sdDatePublished 2019-04-11T00:14
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N146d591d66b24af99792d0a26bc3964e
35 schema:url http://link.springer.com/10.1007%2FBF02921566
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N06ca3f2d2cf2483e812b2f63ae01aa2e rdf:first sg:person.014712433355.25
40 rdf:rest N091767a6a7fd463597e836b8ab48ff15
41 N091767a6a7fd463597e836b8ab48ff15 rdf:first sg:person.010613323412.46
42 rdf:rest rdf:nil
43 N146d591d66b24af99792d0a26bc3964e schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N290b17683060495ba5f9ae71d24814ac schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N52478b9a8cd347ea8a414e9085fc3cbb schema:name doi
48 schema:value 10.1007/bf02921566
49 rdf:type schema:PropertyValue
50 N70e6e86f7ec9452ebe1663edc8aa12cb schema:name readcube_id
51 schema:value cd9c5e1cac4dfc44cb67b3359cc43c61f5ea1a05ed16bc7d9250a2a773951b70
52 rdf:type schema:PropertyValue
53 N822be88e024b4604b2e8fc159840631a schema:volumeNumber 6
54 rdf:type schema:PublicationVolume
55 N91ca4a2965104a7c8678ae7fd7a6afeb schema:name dimensions_id
56 schema:value pub.1043165353
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136350 schema:issn 1050-6926
65 1559-002X
66 schema:name The Journal of Geometric Analysis
67 rdf:type schema:Periodical
68 sg:person.010613323412.46 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
69 schema:familyName Seeley
70 schema:givenName Robert T.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613323412.46
72 rdf:type schema:Person
73 sg:person.014712433355.25 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
74 schema:familyName Grubb
75 schema:givenName Gerd
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712433355.25
77 rdf:type schema:Person
78 sg:pub.10.1007/978-1-4612-0769-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004459148
79 https://doi.org/10.1007/978-1-4612-0769-6
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00276190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029974263
82 https://doi.org/10.1007/bf00276190
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01206955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008349395
85 https://doi.org/10.1007/bf01206955
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01405172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028796555
88 https://doi.org/10.1007/bf01405172
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01884310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004127512
91 https://doi.org/10.1007/bf01884310
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02099174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046299984
94 https://doi.org/10.1007/bf02099174
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/cpa.3160360105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040205371
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(92)90146-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032712201
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/s0305004100049410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030718898
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/03605309208820913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032316300
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1090/pspum/010/0237943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089193191
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4153/cjm-1949-021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263678
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
109 schema:name Department of Mathematics, University of Copenhagen, Denmark
110 Department of Mathematics, University of Massachussetts at Boston, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...