Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

Yan Zhongwei, Yang Chi, Phil Jones

ABSTRACT

Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from −0.33 to 0.6°C for Beijing and −0.33 to 0.3°C for Shanghai, Annual mean and extreme temperature series are deduced from the daily observations and trends in the adjusted and unadjusted series are compared. The adjusted yearly mean temperatures show a warming trend of 0.5°C/ century since the turn of this century and an enhanced one of 2.0°C/ century since the 1960s. In contrast, the unadjusted data show a twice this value trend for Shanghai but little trend for Beijing at the long-term scale and overestimate the recent warming by 50%–130%. Beijing experienced a decrease of frequency of the extremes together with a cooling during the 1940s–1970s and an increase of frequency of extremes together with a warming since then. The trends of frequency of extremes at Shanghai were more or less opposite. It is implied that the regional trends of strong weather variations may be different even when the regional mean temperatures coherently change. More... »

PAGES

309-322

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02919312

DOI

http://dx.doi.org/10.1007/bf02919312

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045140840


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Historical Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/21", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "History and Archaeology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhongwei", 
        "givenName": "Yan", 
        "id": "sg:person.016051512411.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051512411.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "CRU, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Phil", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005468316392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002364713", 
          "https://doi.org/10.1023/a:1005468316392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1993)006<2298:iacubi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008817973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gl017i013p02377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015728375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3370120402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044655337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051729171"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from \u22120.33 to 0.6\u00b0C for Beijing and \u22120.33 to 0.3\u00b0C for Shanghai, Annual mean and extreme temperature series are deduced from the daily observations and trends in the adjusted and unadjusted series are compared. The adjusted yearly mean temperatures show a warming trend of 0.5\u00b0C/ century since the turn of this century and an enhanced one of 2.0\u00b0C/ century since the 1960s. In contrast, the unadjusted data show a twice this value trend for Shanghai but little trend for Beijing at the long-term scale and overestimate the recent warming by 50%\u2013130%. Beijing experienced a decrease of frequency of the extremes together with a cooling during the 1940s\u20131970s and an increase of frequency of extremes together with a warming since then. The trends of frequency of extremes at Shanghai were more or less opposite. It is implied that the regional trends of strong weather variations may be different even when the regional mean temperatures coherently change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02919312", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135901", 
        "issn": [
          "0256-1530", 
          "1861-9533"
        ], 
        "name": "Advances in Atmospheric Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai", 
    "pagination": "309-322", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d70562cd852aeccba9dcdccd07ac56eaeda1ebc9ff94473fe96ed3c0cdab646b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02919312"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045140840"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02919312", 
      "https://app.dimensions.ai/details/publication/pub.1045140840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02919312"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02919312'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02919312'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02919312'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02919312'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02919312 schema:about anzsrc-for:21
2 anzsrc-for:2103
3 schema:author N2a0dc0fefb5a42f79bf6dd04e1d27250
4 schema:citation sg:pub.10.1023/a:1005468316392
5 https://doi.org/10.1002/joc.3370120402
6 https://doi.org/10.1029/gl017i013p02377
7 https://doi.org/10.1175/1520-0442(1993)006<2298:iacubi>2.0.co;2
8 https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2
9 schema:datePublished 2001-05
10 schema:datePublishedReg 2001-05-01
11 schema:description Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from −0.33 to 0.6°C for Beijing and −0.33 to 0.3°C for Shanghai, Annual mean and extreme temperature series are deduced from the daily observations and trends in the adjusted and unadjusted series are compared. The adjusted yearly mean temperatures show a warming trend of 0.5°C/ century since the turn of this century and an enhanced one of 2.0°C/ century since the 1960s. In contrast, the unadjusted data show a twice this value trend for Shanghai but little trend for Beijing at the long-term scale and overestimate the recent warming by 50%–130%. Beijing experienced a decrease of frequency of the extremes together with a cooling during the 1940s–1970s and an increase of frequency of extremes together with a warming since then. The trends of frequency of extremes at Shanghai were more or less opposite. It is implied that the regional trends of strong weather variations may be different even when the regional mean temperatures coherently change.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N08adf95894f34454a9eaae90d437ff1b
16 N1ee694fe989a4e0e97c3b677c23b1cfc
17 sg:journal.1135901
18 schema:name Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai
19 schema:pagination 309-322
20 schema:productId N78a9be0d055d4a9d9a1fbd768bb1dd1d
21 N8eb292e5191f4d9f8fe561bd1ed51df4
22 Na299b82dcc4547c88a78b25e5fc0bdfe
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045140840
24 https://doi.org/10.1007/bf02919312
25 schema:sdDatePublished 2019-04-11T13:48
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N7c47b06362bc491eb9bd29eb7b4e3647
28 schema:url http://link.springer.com/10.1007/BF02919312
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N08adf95894f34454a9eaae90d437ff1b schema:issueNumber 3
33 rdf:type schema:PublicationIssue
34 N1ee694fe989a4e0e97c3b677c23b1cfc schema:volumeNumber 18
35 rdf:type schema:PublicationVolume
36 N2a0dc0fefb5a42f79bf6dd04e1d27250 rdf:first sg:person.016051512411.89
37 rdf:rest N7b7cf84fad9d4aba9b9eda3f83626ec6
38 N3111cf23e47e47619f46b66d9074f3c9 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
39 schema:familyName Jones
40 schema:givenName Phil
41 rdf:type schema:Person
42 N56e72807a1e74563a9fd20ff6d21c784 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
43 schema:familyName Chi
44 schema:givenName Yang
45 rdf:type schema:Person
46 N78a9be0d055d4a9d9a1fbd768bb1dd1d schema:name doi
47 schema:value 10.1007/bf02919312
48 rdf:type schema:PropertyValue
49 N7b7cf84fad9d4aba9b9eda3f83626ec6 rdf:first N56e72807a1e74563a9fd20ff6d21c784
50 rdf:rest Nd8458551e22f414084179eab5246373a
51 N7c47b06362bc491eb9bd29eb7b4e3647 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N8eb292e5191f4d9f8fe561bd1ed51df4 schema:name dimensions_id
54 schema:value pub.1045140840
55 rdf:type schema:PropertyValue
56 Na299b82dcc4547c88a78b25e5fc0bdfe schema:name readcube_id
57 schema:value d70562cd852aeccba9dcdccd07ac56eaeda1ebc9ff94473fe96ed3c0cdab646b
58 rdf:type schema:PropertyValue
59 Nd8458551e22f414084179eab5246373a rdf:first N3111cf23e47e47619f46b66d9074f3c9
60 rdf:rest rdf:nil
61 anzsrc-for:21 schema:inDefinedTermSet anzsrc-for:
62 schema:name History and Archaeology
63 rdf:type schema:DefinedTerm
64 anzsrc-for:2103 schema:inDefinedTermSet anzsrc-for:
65 schema:name Historical Studies
66 rdf:type schema:DefinedTerm
67 sg:journal.1135901 schema:issn 0256-1530
68 1861-9533
69 schema:name Advances in Atmospheric Sciences
70 rdf:type schema:Periodical
71 sg:person.016051512411.89 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
72 schema:familyName Zhongwei
73 schema:givenName Yan
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051512411.89
75 rdf:type schema:Person
76 sg:pub.10.1023/a:1005468316392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364713
77 https://doi.org/10.1023/a:1005468316392
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/joc.3370120402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044655337
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1029/gl017i013p02377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015728375
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1175/1520-0442(1993)006<2298:iacubi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008817973
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051729171
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
88 schema:name LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.8273.e schema:alternateName University of East Anglia
91 schema:name CRU, University of East Anglia, NR4 7TJ, Norwich, UK
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...