Thermal performance of a spirally coiled finned tube heat exchanger under wet-Surface conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-02

AUTHORS

Somchai Wongwises, Paisarn Naphon

ABSTRACT

This paper is a continuation of the authors’ previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data. More... »

PAGES

212-226

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02915823

DOI

http://dx.doi.org/10.1007/bf02915823

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011763017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Department of Mechanical Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naphon", 
        "givenName": "Paisarn", 
        "id": "sg:person.07757414477.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757414477.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0017-9310(01)00002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005139916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2004.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006577163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022967208737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007532891", 
          "https://doi.org/10.1023/a:1022967208737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5983(00)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013273346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-4332(95)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015173161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/18811248.2001.9715102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026812568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690200220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026910762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-4311(96)00002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027019294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690170517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027303035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1290-0729(03)00088-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029513002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1290-0729(03)00088-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029513002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(97)00042-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032277345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(98)00109-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036728208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037874653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(02)00370-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038399551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(98)00091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046474452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(95)00303-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051966637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053811463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053811463"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-02", 
    "datePublishedReg": "2006-02-01", 
    "description": "This paper is a continuation of the authors\u2019 previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02915823", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Thermal performance of a spirally coiled finned tube heat exchanger under wet-Surface conditions", 
    "pagination": "212-226", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "380b9cb5bb2258591f3f6947b55a5508f10f5e7f2185f83a5e0cc202f72f485d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02915823"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011763017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02915823", 
      "https://app.dimensions.ai/details/publication/pub.1011763017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02915823"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02915823'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02915823'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02915823'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02915823'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02915823 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na44ac30e9ff0497f97c622957a4e58a1
4 schema:citation sg:pub.10.1023/a:1022967208737
5 https://doi.org/10.1002/aic.690170517
6 https://doi.org/10.1002/aic.690200220
7 https://doi.org/10.1016/0017-9310(95)00303-7
8 https://doi.org/10.1016/0890-4332(95)90054-3
9 https://doi.org/10.1016/1359-4311(96)00002-6
10 https://doi.org/10.1016/j.expthermflusci.2004.07.002
11 https://doi.org/10.1016/j.icheatmasstransfer.2004.04.031
12 https://doi.org/10.1016/s0017-9310(01)00002-3
13 https://doi.org/10.1016/s0017-9310(97)00042-2
14 https://doi.org/10.1016/s0169-5983(00)00034-4
15 https://doi.org/10.1016/s0735-1933(02)00370-6
16 https://doi.org/10.1016/s1290-0729(03)00088-7
17 https://doi.org/10.1016/s1359-4311(98)00091-x
18 https://doi.org/10.1016/s1359-4311(98)00109-4
19 https://doi.org/10.1017/s0022112074000796
20 https://doi.org/10.1080/18811248.2001.9715102
21 schema:datePublished 2006-02
22 schema:datePublishedReg 2006-02-01
23 schema:description This paper is a continuation of the authors’ previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N75b0997be1bf4ba3b6c419880e342d8c
28 N83bf92a3ebcf4bff94d821eb92d7de49
29 sg:journal.1295111
30 schema:name Thermal performance of a spirally coiled finned tube heat exchanger under wet-Surface conditions
31 schema:pagination 212-226
32 schema:productId N02bf0b04a0574d799688c7c946f6c916
33 N0771574c377a4655a1e63c9ebb5145bd
34 N7dd2bb5e9319435296be508d85957bf4
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011763017
36 https://doi.org/10.1007/bf02915823
37 schema:sdDatePublished 2019-04-11T13:47
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N6429500e537c4ffd973c512569d56e8f
40 schema:url http://link.springer.com/10.1007%2FBF02915823
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N02bf0b04a0574d799688c7c946f6c916 schema:name readcube_id
45 schema:value 380b9cb5bb2258591f3f6947b55a5508f10f5e7f2185f83a5e0cc202f72f485d
46 rdf:type schema:PropertyValue
47 N0771574c377a4655a1e63c9ebb5145bd schema:name dimensions_id
48 schema:value pub.1011763017
49 rdf:type schema:PropertyValue
50 N6429500e537c4ffd973c512569d56e8f schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N75b0997be1bf4ba3b6c419880e342d8c schema:volumeNumber 20
53 rdf:type schema:PublicationVolume
54 N7dd2bb5e9319435296be508d85957bf4 schema:name doi
55 schema:value 10.1007/bf02915823
56 rdf:type schema:PropertyValue
57 N83bf92a3ebcf4bff94d821eb92d7de49 schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N8757484648cb4f9e9775ca8709144854 rdf:first sg:person.07757414477.49
60 rdf:rest rdf:nil
61 Na44ac30e9ff0497f97c622957a4e58a1 rdf:first sg:person.012267021412.00
62 rdf:rest N8757484648cb4f9e9775ca8709144854
63 Nb3813f0c02d54396a634adfd6e8ee44b schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), USA
64 rdf:type schema:Organization
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
69 schema:name Interdisciplinary Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1295111 schema:issn 1011-8861
72 1226-4865
73 schema:name Journal of Mechanical Science and Technology
74 rdf:type schema:Periodical
75 sg:person.012267021412.00 schema:affiliation Nb3813f0c02d54396a634adfd6e8ee44b
76 schema:familyName Wongwises
77 schema:givenName Somchai
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
79 rdf:type schema:Person
80 sg:person.07757414477.49 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
81 schema:familyName Naphon
82 schema:givenName Paisarn
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757414477.49
84 rdf:type schema:Person
85 sg:pub.10.1023/a:1022967208737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007532891
86 https://doi.org/10.1023/a:1022967208737
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/aic.690170517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027303035
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/aic.690200220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026910762
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0017-9310(95)00303-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051966637
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0890-4332(95)90054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015173161
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/1359-4311(96)00002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027019294
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.expthermflusci.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037874653
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.icheatmasstransfer.2004.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006577163
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0017-9310(01)00002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005139916
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0017-9310(97)00042-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032277345
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0169-5983(00)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013273346
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0735-1933(02)00370-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038399551
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s1290-0729(03)00088-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029513002
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s1359-4311(98)00091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046474452
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s1359-4311(98)00109-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036728208
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0022112074000796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053811463
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/18811248.2001.9715102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026812568
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
121 schema:name Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...