Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08

AUTHORS

Jian Wu, Weimei Jiang, Congbin Fu, Bingkai Su, Hongnian Liu, Jianping Tang

ABSTRACT

As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July. More... »

PAGES

637-649

References to SciGraph publications

  • 2001-07. Recent researches on aerosol in china in ADVANCES IN ATMOSPHERIC SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02915731

    DOI

    http://dx.doi.org/10.1007/bf02915731

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006611495


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "Department of Atmospheric Sciences, Yunnan University, 650091, Kunming", 
                "Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Jian", 
            "id": "sg:person.07460472242.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460472242.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Weimei", 
            "id": "sg:person.015001570063.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001570063.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Congbin", 
            "id": "sg:person.013623013656.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013623013656.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Bingkai", 
            "id": "sg:person.015516131100.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015516131100.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Hongnian", 
            "id": "sg:person.010551345260.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551345260.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Jianping", 
            "id": "sg:person.016660456507.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660456507.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1029/98jd02593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/97jd03426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006005195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/96jd00671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011416061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/97jd01863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012911973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/1999gl010968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017085473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(99)00077-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018219562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2000jd900514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022982979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.170278997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023081238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(1997)010<1562:gcmcot>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027239169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002jd003093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027338081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/97jd00199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029755466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1075159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040067144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-001-0046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041378789", 
              "https://doi.org/10.1007/s00376-001-0046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-001-0046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041378789", 
              "https://doi.org/10.1007/s00376-001-0046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/96jd03436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047386072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/95jd03426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051572399"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-08", 
        "datePublishedReg": "2004-08-01", 
        "description": "As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02915731", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135901", 
            "issn": [
              "0256-1530", 
              "1861-9533"
            ], 
            "name": "Advances in Atmospheric Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China", 
        "pagination": "637-649", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1f7d9686bfda4531e84d1a0c09ed7daa205b7487aa43a6f7b55c046c28789864"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02915731"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006611495"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02915731", 
          "https://app.dimensions.ai/details/publication/pub.1006611495"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02915731"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02915731'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02915731'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02915731'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02915731'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02915731 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N5859314fa45b40edba9bdd0d5ea8a387
    4 schema:citation sg:pub.10.1007/s00376-001-0046-9
    5 https://doi.org/10.1016/s1352-2310(99)00077-1
    6 https://doi.org/10.1029/1999gl010968
    7 https://doi.org/10.1029/2000jd900514
    8 https://doi.org/10.1029/2002jd003093
    9 https://doi.org/10.1029/95jd03426
    10 https://doi.org/10.1029/96jd00671
    11 https://doi.org/10.1029/96jd03436
    12 https://doi.org/10.1029/97jd00199
    13 https://doi.org/10.1029/97jd01863
    14 https://doi.org/10.1029/97jd03426
    15 https://doi.org/10.1029/98jd02593
    16 https://doi.org/10.1073/pnas.170278997
    17 https://doi.org/10.1126/science.1075159
    18 https://doi.org/10.1175/1520-0442(1997)010<1562:gcmcot>2.0.co;2
    19 schema:datePublished 2004-08
    20 schema:datePublishedReg 2004-08-01
    21 schema:description As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N05c4b0e18f7d403e96b9eb247e1dc6b5
    26 Ndc060034e81748c4803c71d6cdecc001
    27 sg:journal.1135901
    28 schema:name Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China
    29 schema:pagination 637-649
    30 schema:productId N075a3365bd764b4486ab485733b92d30
    31 N6503c158c3ae4d149852e11183e96e7f
    32 N86c3af8e63eb47f1a05c84b72e56a1c1
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006611495
    34 https://doi.org/10.1007/bf02915731
    35 schema:sdDatePublished 2019-04-11T13:50
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N66ae2d91be1b468cb117a8fe6fbe5112
    38 schema:url http://link.springer.com/10.1007/BF02915731
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N05c4b0e18f7d403e96b9eb247e1dc6b5 schema:volumeNumber 21
    43 rdf:type schema:PublicationVolume
    44 N075a3365bd764b4486ab485733b92d30 schema:name readcube_id
    45 schema:value 1f7d9686bfda4531e84d1a0c09ed7daa205b7487aa43a6f7b55c046c28789864
    46 rdf:type schema:PropertyValue
    47 N37409c06c8bb49aba9a3d2161422365d rdf:first sg:person.010551345260.38
    48 rdf:rest Nab53e067d9b144a5be0738292d596d3b
    49 N548fd19975334ef49f0e837e9c96b39f rdf:first sg:person.015516131100.16
    50 rdf:rest N37409c06c8bb49aba9a3d2161422365d
    51 N5859314fa45b40edba9bdd0d5ea8a387 rdf:first sg:person.07460472242.44
    52 rdf:rest Nae9201a3376a4ee6a50fdc009267bcbe
    53 N6503c158c3ae4d149852e11183e96e7f schema:name doi
    54 schema:value 10.1007/bf02915731
    55 rdf:type schema:PropertyValue
    56 N66ae2d91be1b468cb117a8fe6fbe5112 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N73e02ec7ba1e4cc68abe9622c9e8982b rdf:first sg:person.013623013656.54
    59 rdf:rest N548fd19975334ef49f0e837e9c96b39f
    60 N86c3af8e63eb47f1a05c84b72e56a1c1 schema:name dimensions_id
    61 schema:value pub.1006611495
    62 rdf:type schema:PropertyValue
    63 Nab53e067d9b144a5be0738292d596d3b rdf:first sg:person.016660456507.01
    64 rdf:rest rdf:nil
    65 Nae9201a3376a4ee6a50fdc009267bcbe rdf:first sg:person.015001570063.42
    66 rdf:rest N73e02ec7ba1e4cc68abe9622c9e8982b
    67 Ndc060034e81748c4803c71d6cdecc001 schema:issueNumber 4
    68 rdf:type schema:PublicationIssue
    69 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Earth Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Atmospheric Sciences
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1135901 schema:issn 0256-1530
    76 1861-9533
    77 schema:name Advances in Atmospheric Sciences
    78 rdf:type schema:Periodical
    79 sg:person.010551345260.38 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    80 schema:familyName Liu
    81 schema:givenName Hongnian
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551345260.38
    83 rdf:type schema:Person
    84 sg:person.013623013656.54 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    85 schema:familyName Fu
    86 schema:givenName Congbin
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013623013656.54
    88 rdf:type schema:Person
    89 sg:person.015001570063.42 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    90 schema:familyName Jiang
    91 schema:givenName Weimei
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001570063.42
    93 rdf:type schema:Person
    94 sg:person.015516131100.16 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    95 schema:familyName Su
    96 schema:givenName Bingkai
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015516131100.16
    98 rdf:type schema:Person
    99 sg:person.016660456507.01 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    100 schema:familyName Tang
    101 schema:givenName Jianping
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660456507.01
    103 rdf:type schema:Person
    104 sg:person.07460472242.44 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    105 schema:familyName Wu
    106 schema:givenName Jian
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460472242.44
    108 rdf:type schema:Person
    109 sg:pub.10.1007/s00376-001-0046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041378789
    110 https://doi.org/10.1007/s00376-001-0046-9
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s1352-2310(99)00077-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018219562
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1029/1999gl010968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017085473
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1029/2000jd900514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022982979
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1029/2002jd003093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027338081
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1029/95jd03426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051572399
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1029/96jd00671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011416061
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1029/96jd03436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047386072
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1029/97jd00199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029755466
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1029/97jd01863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012911973
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1029/97jd03426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006005195
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1029/98jd02593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004235990
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1073/pnas.170278997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023081238
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1126/science.1075159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067144
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1175/1520-0442(1997)010<1562:gcmcot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027239169
    139 rdf:type schema:CreativeWork
    140 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
    141 schema:name Department of Atmospheric Sciences, Nanjing University, 210093, Nanjing
    142 Department of Atmospheric Sciences, Yunnan University, 650091, Kunming
    143 rdf:type schema:Organization
    144 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
    145 schema:name Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...