An evaluation of the effects of cloud parameterization in the R42L9 GCM View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-04

AUTHORS

Tongwen Wu, Zaizhi Wang, Yimin Liu, Rucong Yu, Guoxiong Wu

ABSTRACT

Cloud is one of the uncertainty factors influencing the performance of a general circulation model (GCM). Recently, the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP) has developed a new version of a GCM (R42L9). In this work, roles of cloud parameterization in the R42L9 are evaluated through a comparison between two 20-year simulations using different cloud schemes. One scheme is that the cloud in the model is diagnosed from relative humidity and vertical velocity, and the other one is that diagnostic cloud is replaced by retrieved cloud amount from the International Satellite Cloud Climatology Project (ISCCP), combined with the amounts of high-, middle-, and low-cloud and heights of the cloud base and top from the NCEP. The boreal winter and summer seasonal means, as well as the annual mean, of the simulated top-of-atmosphere shortwave radiative flux, surface energy fluxes, and precipitation are analyzed in comparison with the observational estimates and NCEP reanalysis data. The results show that the scheme of diagnostic cloud parameterization greatly contributes to model biases of radiative budget and precipitation. When our derived cloud fractions are used to replace the diagnostic cloud amount, the top-of-atmosphere and surface radiation fields are better estimated as well as the spatial pattern of precipitation. The simulations of the regional precipitation, especially over the equatorial Indian Ocean in winter and the Asia-western Pacific region in summer, are obviously improved. More... »

PAGES

153

References to SciGraph publications

  • 1996-02. A nine-layer atmospheric general circulation model and its performance in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2003-09. The performance of atmospheric component model R42L9 of GOALS/LASG in ADVANCES IN ATMOSPHERIC SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02915701

    DOI

    http://dx.doi.org/10.1007/bf02915701

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031062847


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "China Meteorological Administration", 
              "id": "https://www.grid.ac/institutes/grid.8658.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing", 
                "Laboratory for Climate Study, National Climate Center, 100081, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Tongwen", 
            "id": "sg:person.011614003333.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614003333.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zaizhi", 
            "id": "sg:person.016023563215.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023563215.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yimin", 
            "id": "sg:person.012763177765.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763177765.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Rucong", 
            "id": "sg:person.015173077562.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173077562.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Guoxiong", 
            "id": "sg:person.07434604407.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07434604407.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1175/1520-0477(1991)072<0002:icdp>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02915398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001956720", 
              "https://doi.org/10.1007/bf02915398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02915398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001956720", 
              "https://doi.org/10.1007/bf02915398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004921941", 
              "https://doi.org/10.1007/bf02657024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004921941", 
              "https://doi.org/10.1007/bf02657024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004954487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0469(1978)035<2111:rpiewc>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008651462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/94jd00943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011849757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(1996)009<3419:eotvso>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012700517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020348944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49711347710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49711347710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0477(1999)080<0029:aootro>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037129005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0477(1997)078<0197:eagmeb>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050117235"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-04", 
        "datePublishedReg": "2004-04-01", 
        "description": "Cloud is one of the uncertainty factors influencing the performance of a general circulation model (GCM). Recently, the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP) has developed a new version of a GCM (R42L9). In this work, roles of cloud parameterization in the R42L9 are evaluated through a comparison between two 20-year simulations using different cloud schemes. One scheme is that the cloud in the model is diagnosed from relative humidity and vertical velocity, and the other one is that diagnostic cloud is replaced by retrieved cloud amount from the International Satellite Cloud Climatology Project (ISCCP), combined with the amounts of high-, middle-, and low-cloud and heights of the cloud base and top from the NCEP. The boreal winter and summer seasonal means, as well as the annual mean, of the simulated top-of-atmosphere shortwave radiative flux, surface energy fluxes, and precipitation are analyzed in comparison with the observational estimates and NCEP reanalysis data. The results show that the scheme of diagnostic cloud parameterization greatly contributes to model biases of radiative budget and precipitation. When our derived cloud fractions are used to replace the diagnostic cloud amount, the top-of-atmosphere and surface radiation fields are better estimated as well as the spatial pattern of precipitation. The simulations of the regional precipitation, especially over the equatorial Indian Ocean in winter and the Asia-western Pacific region in summer, are obviously improved.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02915701", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135901", 
            "issn": [
              "0256-1530", 
              "1861-9533"
            ], 
            "name": "Advances in Atmospheric Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "An evaluation of the effects of cloud parameterization in the R42L9 GCM", 
        "pagination": "153", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "93fb2d515196a02cc63ac52f855465a09bcdddb7b51c0ef8fb793f0b9072e84f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02915701"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031062847"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02915701", 
          "https://app.dimensions.ai/details/publication/pub.1031062847"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02915701"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02915701'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02915701'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02915701'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02915701'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02915701 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N88b6301f6ffd4e3abd854e66b2c423bc
    4 schema:citation sg:pub.10.1007/bf02657024
    5 sg:pub.10.1007/bf02915398
    6 https://doi.org/10.1002/qj.49711347710
    7 https://doi.org/10.1029/94jd00943
    8 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
    9 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2
    10 https://doi.org/10.1175/1520-0442(1996)009<3419:eotvso>2.0.co;2
    11 https://doi.org/10.1175/1520-0469(1978)035<2111:rpiewc>2.0.co;2
    12 https://doi.org/10.1175/1520-0477(1991)072<0002:icdp>2.0.co;2
    13 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
    14 https://doi.org/10.1175/1520-0477(1997)078<0197:eagmeb>2.0.co;2
    15 https://doi.org/10.1175/1520-0477(1999)080<0029:aootro>2.0.co;2
    16 schema:datePublished 2004-04
    17 schema:datePublishedReg 2004-04-01
    18 schema:description Cloud is one of the uncertainty factors influencing the performance of a general circulation model (GCM). Recently, the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP) has developed a new version of a GCM (R42L9). In this work, roles of cloud parameterization in the R42L9 are evaluated through a comparison between two 20-year simulations using different cloud schemes. One scheme is that the cloud in the model is diagnosed from relative humidity and vertical velocity, and the other one is that diagnostic cloud is replaced by retrieved cloud amount from the International Satellite Cloud Climatology Project (ISCCP), combined with the amounts of high-, middle-, and low-cloud and heights of the cloud base and top from the NCEP. The boreal winter and summer seasonal means, as well as the annual mean, of the simulated top-of-atmosphere shortwave radiative flux, surface energy fluxes, and precipitation are analyzed in comparison with the observational estimates and NCEP reanalysis data. The results show that the scheme of diagnostic cloud parameterization greatly contributes to model biases of radiative budget and precipitation. When our derived cloud fractions are used to replace the diagnostic cloud amount, the top-of-atmosphere and surface radiation fields are better estimated as well as the spatial pattern of precipitation. The simulations of the regional precipitation, especially over the equatorial Indian Ocean in winter and the Asia-western Pacific region in summer, are obviously improved.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf Nb0b8d0e915be4d0d944fd9460f3ce548
    23 Nfa6833689d9a4712a00954ddaf2e30d7
    24 sg:journal.1135901
    25 schema:name An evaluation of the effects of cloud parameterization in the R42L9 GCM
    26 schema:pagination 153
    27 schema:productId N6c2a4d129125423882a87a6baab40ec7
    28 Nb50c26b8c8b447189e25024949929098
    29 Nc1798058868742cbb060a27fc34f6ba9
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031062847
    31 https://doi.org/10.1007/bf02915701
    32 schema:sdDatePublished 2019-04-11T13:58
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N4d090319f3d442aa8b3c9cc00fed0fe8
    35 schema:url http://link.springer.com/10.1007/BF02915701
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N38da2e43510a422992c1aaf4f970f851 rdf:first sg:person.07434604407.69
    40 rdf:rest rdf:nil
    41 N4d090319f3d442aa8b3c9cc00fed0fe8 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N6c2a4d129125423882a87a6baab40ec7 schema:name readcube_id
    44 schema:value 93fb2d515196a02cc63ac52f855465a09bcdddb7b51c0ef8fb793f0b9072e84f
    45 rdf:type schema:PropertyValue
    46 N88b6301f6ffd4e3abd854e66b2c423bc rdf:first sg:person.011614003333.14
    47 rdf:rest Ndef964843cc941ba9b61bd1bdbecdcd2
    48 Nb0b8d0e915be4d0d944fd9460f3ce548 schema:issueNumber 2
    49 rdf:type schema:PublicationIssue
    50 Nb50c26b8c8b447189e25024949929098 schema:name dimensions_id
    51 schema:value pub.1031062847
    52 rdf:type schema:PropertyValue
    53 Nb96cf545b9464515a70854e7478637ac rdf:first sg:person.015173077562.22
    54 rdf:rest N38da2e43510a422992c1aaf4f970f851
    55 Nc1798058868742cbb060a27fc34f6ba9 schema:name doi
    56 schema:value 10.1007/bf02915701
    57 rdf:type schema:PropertyValue
    58 Ndcf314df36624a6d8774da012881181d rdf:first sg:person.012763177765.00
    59 rdf:rest Nb96cf545b9464515a70854e7478637ac
    60 Ndef964843cc941ba9b61bd1bdbecdcd2 rdf:first sg:person.016023563215.84
    61 rdf:rest Ndcf314df36624a6d8774da012881181d
    62 Nfa6833689d9a4712a00954ddaf2e30d7 schema:volumeNumber 21
    63 rdf:type schema:PublicationVolume
    64 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Earth Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Atmospheric Sciences
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1135901 schema:issn 0256-1530
    71 1861-9533
    72 schema:name Advances in Atmospheric Sciences
    73 rdf:type schema:Periodical
    74 sg:person.011614003333.14 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
    75 schema:familyName Wu
    76 schema:givenName Tongwen
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614003333.14
    78 rdf:type schema:Person
    79 sg:person.012763177765.00 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    80 schema:familyName Liu
    81 schema:givenName Yimin
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763177765.00
    83 rdf:type schema:Person
    84 sg:person.015173077562.22 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    85 schema:familyName Yu
    86 schema:givenName Rucong
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173077562.22
    88 rdf:type schema:Person
    89 sg:person.016023563215.84 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    90 schema:familyName Wang
    91 schema:givenName Zaizhi
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023563215.84
    93 rdf:type schema:Person
    94 sg:person.07434604407.69 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    95 schema:familyName Wu
    96 schema:givenName Guoxiong
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07434604407.69
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf02657024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004921941
    100 https://doi.org/10.1007/bf02657024
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02915398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001956720
    103 https://doi.org/10.1007/bf02915398
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1002/qj.49711347710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032231329
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1029/94jd00943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159621
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004954487
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348944
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1175/1520-0442(1996)009<3419:eotvso>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012700517
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1175/1520-0469(1978)035<2111:rpiewc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008651462
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1175/1520-0477(1991)072<0002:icdp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072272
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849757
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1175/1520-0477(1997)078<0197:eagmeb>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050117235
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1175/1520-0477(1999)080<0029:aootro>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037129005
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
    126 schema:name State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing
    127 rdf:type schema:Organization
    128 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
    129 schema:name Laboratory for Climate Study, National Climate Center, 100081, Beijing
    130 State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...