Human hepatocyte polyploidization kinetics in the course of life cycle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-12

AUTHORS

B. N. Kudryavtsev, M. V. Kudryavtseva, G. A. Sakuta, G. I. Stein

ABSTRACT

The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis. More... »

PAGES

387

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02915139

DOI

http://dx.doi.org/10.1007/bf02915139

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012027155

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8148960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1199", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryonic and Fetal Development", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polyploidy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418947.7", 
          "name": [
            "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryavtsev", 
        "givenName": "B. N.", 
        "id": "sg:person.01116051556.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116051556.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418947.7", 
          "name": [
            "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryavtseva", 
        "givenName": "M. V.", 
        "id": "sg:person.0736106204.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736106204.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418947.7", 
          "name": [
            "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakuta", 
        "givenName": "G. A.", 
        "id": "sg:person.01324023476.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324023476.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418947.7", 
          "name": [
            "Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "G. I.", 
        "id": "sg:person.01051320007.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051320007.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00493368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037283118", 
          "https://doi.org/10.1007/bf00493368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00958971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028201520", 
          "https://doi.org/10.1007/bf00958971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48263-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052818995", 
          "https://doi.org/10.1007/978-3-642-48263-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01259493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028136693", 
          "https://doi.org/10.1007/bf01259493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02109231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019078037", 
          "https://doi.org/10.1007/bf02109231"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-12", 
    "datePublishedReg": "1993-12-01", 
    "description": "The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86\u201392 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C\u00d72 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02915139", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1446211", 
        "issn": [
          "0340-6075", 
          "2750-9761"
        ], 
        "name": "Cell Pathology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "keywords": [
      "human liver", 
      "normal human liver", 
      "binucleate cells", 
      "human liver parenchyma", 
      "postnatal liver growth", 
      "liver parenchyma", 
      "liver growth", 
      "human hepatocytes", 
      "polyploid cells", 
      "hepatocytes", 
      "Feulgen-DNA cytophotometry", 
      "rats", 
      "liver", 
      "hepatocyte polyploidization", 
      "cells", 
      "DNA synthesis", 
      "polyploid hepatocytes", 
      "years", 
      "patients", 
      "relative number", 
      "process of polyploidization", 
      "levels", 
      "parenchyma", 
      "individuals", 
      "birth", 
      "age", 
      "conventional mitosis", 
      "days", 
      "increase", 
      "acytokinetic mitosis", 
      "mononucleate", 
      "mitotic cycle", 
      "course", 
      "cytophotometry", 
      "mitosis", 
      "period", 
      "polyploid nuclei", 
      "nucleus", 
      "rate", 
      "binucleate", 
      "dividing", 
      "cycle", 
      "initial ploidy level", 
      "polyploidization process", 
      "number", 
      "time", 
      "life cycle", 
      "growth", 
      "polyploidization", 
      "method", 
      "process", 
      "probability", 
      "maturity", 
      "formation", 
      "synthesis", 
      "kinetics", 
      "ploidy level", 
      "accumulation rates", 
      "mathematical modeling methods", 
      "divide", 
      "modeling method"
    ], 
    "name": "Human hepatocyte polyploidization kinetics in the course of life cycle", 
    "pagination": "387", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012027155"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02915139"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8148960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02915139", 
      "https://app.dimensions.ai/details/publication/pub.1012027155"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_227.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02915139"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02915139'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02915139'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02915139'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02915139'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      108 URIs      95 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02915139 schema:about N03b9a590b4854af89c4557355fd3be64
2 N13711e82955040a088bed76a14b9aa93
3 N16848001cc8f4f528ae7a6ada56fe529
4 N25369534b5914de2bae9ffd6bff54b45
5 N29df2cfefe7a44b29d11c8b07ff2ca28
6 N3884741f06ac4ee7a696e90730aaf491
7 N4eb04a7586254a89bae8165aa5a5bea0
8 N547bcb757156424e968797c6c0fd1acd
9 N57295449610e4d329858b1d909e4459a
10 N5a33b54bc6be4edbb9568aadd20ad131
11 N772e42392c2e4e3a86d3cc9e7c05a6fb
12 N7bcb4ea9ff0b43ae9c413bd837172e99
13 N8704a42d51bc46189869d2e9ae41b2aa
14 Ncac291912f4442e89b66a85824549a80
15 Nf9118b4ddd944303813c7e8d753f8a77
16 Nff62fa9c2deb4f3c9dead5a6eccc9fcc
17 anzsrc-for:11
18 anzsrc-for:1199
19 schema:author Ndc9d6840a377472db9ecb681621d93d4
20 schema:citation sg:pub.10.1007/978-3-642-48263-2_4
21 sg:pub.10.1007/bf00493368
22 sg:pub.10.1007/bf00958971
23 sg:pub.10.1007/bf01259493
24 sg:pub.10.1007/bf02109231
25 schema:datePublished 1993-12
26 schema:datePublishedReg 1993-12-01
27 schema:description The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N9d3efe34fa69469e80e86760ec762388
31 Naa5e95a84c6042d785f9f603ebb00ce4
32 sg:journal.1446211
33 schema:keywords DNA synthesis
34 Feulgen-DNA cytophotometry
35 accumulation rates
36 acytokinetic mitosis
37 age
38 binucleate
39 binucleate cells
40 birth
41 cells
42 conventional mitosis
43 course
44 cycle
45 cytophotometry
46 days
47 divide
48 dividing
49 formation
50 growth
51 hepatocyte polyploidization
52 hepatocytes
53 human hepatocytes
54 human liver
55 human liver parenchyma
56 increase
57 individuals
58 initial ploidy level
59 kinetics
60 levels
61 life cycle
62 liver
63 liver growth
64 liver parenchyma
65 mathematical modeling methods
66 maturity
67 method
68 mitosis
69 mitotic cycle
70 modeling method
71 mononucleate
72 normal human liver
73 nucleus
74 number
75 parenchyma
76 patients
77 period
78 ploidy level
79 polyploid cells
80 polyploid hepatocytes
81 polyploid nuclei
82 polyploidization
83 polyploidization process
84 postnatal liver growth
85 probability
86 process
87 process of polyploidization
88 rate
89 rats
90 relative number
91 synthesis
92 time
93 years
94 schema:name Human hepatocyte polyploidization kinetics in the course of life cycle
95 schema:pagination 387
96 schema:productId N46749d6a97c644ad91d635bc58dd8b23
97 N5a77268a40704edaa09f86051c7ced95
98 Nb1550e9ea67f48a39cc1f96a0189197f
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012027155
100 https://doi.org/10.1007/bf02915139
101 schema:sdDatePublished 2022-10-01T06:28
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N7dcf5468eb5941189e3fe02fb4500dd9
104 schema:url https://doi.org/10.1007/bf02915139
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N03b9a590b4854af89c4557355fd3be64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Embryonic and Fetal Development
110 rdf:type schema:DefinedTerm
111 N13711e82955040a088bed76a14b9aa93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Cell Cycle
113 rdf:type schema:DefinedTerm
114 N16848001cc8f4f528ae7a6ada56fe529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Aged
116 rdf:type schema:DefinedTerm
117 N25369534b5914de2bae9ffd6bff54b45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Middle Aged
119 rdf:type schema:DefinedTerm
120 N29df2cfefe7a44b29d11c8b07ff2ca28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name DNA
122 rdf:type schema:DefinedTerm
123 N3884741f06ac4ee7a696e90730aaf491 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Adult
125 rdf:type schema:DefinedTerm
126 N46749d6a97c644ad91d635bc58dd8b23 schema:name dimensions_id
127 schema:value pub.1012027155
128 rdf:type schema:PropertyValue
129 N4eb04a7586254a89bae8165aa5a5bea0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged, 80 and over
131 rdf:type schema:DefinedTerm
132 N547bcb757156424e968797c6c0fd1acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Child
134 rdf:type schema:DefinedTerm
135 N57295449610e4d329858b1d909e4459a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Child, Preschool
137 rdf:type schema:DefinedTerm
138 N5a33b54bc6be4edbb9568aadd20ad131 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Liver
140 rdf:type schema:DefinedTerm
141 N5a77268a40704edaa09f86051c7ced95 schema:name doi
142 schema:value 10.1007/bf02915139
143 rdf:type schema:PropertyValue
144 N6ebef491c90a4447a650142078020b9a rdf:first sg:person.0736106204.14
145 rdf:rest Na03cac782cfc4710b147bc8ed3828607
146 N772e42392c2e4e3a86d3cc9e7c05a6fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 N7bcb4ea9ff0b43ae9c413bd837172e99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Infant, Newborn
151 rdf:type schema:DefinedTerm
152 N7dcf5468eb5941189e3fe02fb4500dd9 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 N8704a42d51bc46189869d2e9ae41b2aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adolescent
156 rdf:type schema:DefinedTerm
157 N9d3efe34fa69469e80e86760ec762388 schema:issueNumber 1
158 rdf:type schema:PublicationIssue
159 Na03cac782cfc4710b147bc8ed3828607 rdf:first sg:person.01324023476.96
160 rdf:rest Nfc68c8394fac4c3d89adfdc66befcc7a
161 Naa5e95a84c6042d785f9f603ebb00ce4 schema:volumeNumber 64
162 rdf:type schema:PublicationVolume
163 Nb1550e9ea67f48a39cc1f96a0189197f schema:name pubmed_id
164 schema:value 8148960
165 rdf:type schema:PropertyValue
166 Ncac291912f4442e89b66a85824549a80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Aging
168 rdf:type schema:DefinedTerm
169 Ndc9d6840a377472db9ecb681621d93d4 rdf:first sg:person.01116051556.18
170 rdf:rest N6ebef491c90a4447a650142078020b9a
171 Nf9118b4ddd944303813c7e8d753f8a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Polyploidy
173 rdf:type schema:DefinedTerm
174 Nfc68c8394fac4c3d89adfdc66befcc7a rdf:first sg:person.01051320007.58
175 rdf:rest rdf:nil
176 Nff62fa9c2deb4f3c9dead5a6eccc9fcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Infant
178 rdf:type schema:DefinedTerm
179 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
180 schema:name Medical and Health Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:1199 schema:inDefinedTermSet anzsrc-for:
183 schema:name Other Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 sg:journal.1446211 schema:issn 0340-6075
186 2750-9761
187 schema:name Cell Pathology
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01051320007.58 schema:affiliation grid-institutes:grid.418947.7
191 schema:familyName Stein
192 schema:givenName G. I.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051320007.58
194 rdf:type schema:Person
195 sg:person.01116051556.18 schema:affiliation grid-institutes:grid.418947.7
196 schema:familyName Kudryavtsev
197 schema:givenName B. N.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116051556.18
199 rdf:type schema:Person
200 sg:person.01324023476.96 schema:affiliation grid-institutes:grid.418947.7
201 schema:familyName Sakuta
202 schema:givenName G. A.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324023476.96
204 rdf:type schema:Person
205 sg:person.0736106204.14 schema:affiliation grid-institutes:grid.418947.7
206 schema:familyName Kudryavtseva
207 schema:givenName M. V.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736106204.14
209 rdf:type schema:Person
210 sg:pub.10.1007/978-3-642-48263-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052818995
211 https://doi.org/10.1007/978-3-642-48263-2_4
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/bf00493368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037283118
214 https://doi.org/10.1007/bf00493368
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/bf00958971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028201520
217 https://doi.org/10.1007/bf00958971
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/bf01259493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028136693
220 https://doi.org/10.1007/bf01259493
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf02109231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019078037
223 https://doi.org/10.1007/bf02109231
224 rdf:type schema:CreativeWork
225 grid-institutes:grid.418947.7 schema:alternateName Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia
226 schema:name Institute of Cytology, Russian Academy of Sciences, 194064, St-Petersburg, Russia
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...