Simulating convection and macrosegregation in superalloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-03

AUTHORS

S. D. Felicelli, D. R. Poirier, A. F. Giamei, J. C. Heinrich

ABSTRACT

Numerical simulations using a mathematical model of the dendritic solidification of multicomponent alloys that includes thermosolutal convection and macrosegregation were conducted on nickel-based alloys. The results show that segregation patterns vary greatly with cooling conditions, adopting several shapes and levels of intensity. In addition, the segregation patterns are particularly sensitive to the values of the equilibrium partition coefficients of the alloy components. More... »

PAGES

21

References to SciGraph publications

  • 1970-08. The origin of freckles in unidirectionally solidified castings in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1995-09. Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-12-01. Simulation of freckles during vertical solidification of binary alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1970-02. Macrosegregation in ternary alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1979-09. Macrosegregation in a multicomponent low alloy steel in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1981-09. Effect of fluid flow on macrosegregation in axi-symmetric ingots in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1988-07. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4CI-H2O in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1993-07-01. Thermosolutal convection and macrosegregation caused by solute rejection at cell/dendrite tips in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Journal

    TITLE

    JOM

    ISSUE

    3

    VOLUME

    49

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02914651

    DOI

    http://dx.doi.org/10.1007/bf02914651

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034934142


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Felicelli", 
            "givenName": "S. D.", 
            "id": "sg:person.013321272613.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321272613.15"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Poirier", 
            "givenName": "D. R.", 
            "id": "sg:person.015717554343.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Giamei", 
            "givenName": "A. F.", 
            "id": "sg:person.016370647001.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370647001.98"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Heinrich", 
            "givenName": "J. C.", 
            "id": "sg:person.016470251527.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470251527.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02652503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003691274", 
              "https://doi.org/10.1007/bf02652503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025098594", 
              "https://doi.org/10.1007/bf02646605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023616119", 
              "https://doi.org/10.1007/bf02645156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02811556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033553450", 
              "https://doi.org/10.1007/bf02811556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027277476", 
              "https://doi.org/10.1007/bf02643435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037363216", 
              "https://doi.org/10.1007/bf02654312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022272390", 
              "https://doi.org/10.1007/bf02651162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02671251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012835501", 
              "https://doi.org/10.1007/bf02671251"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-03", 
        "datePublishedReg": "1997-03-01", 
        "description": "Numerical simulations using a mathematical model of the dendritic solidification of multicomponent alloys that includes thermosolutal convection and macrosegregation were conducted on nickel-based alloys. The results show that segregation patterns vary greatly with cooling conditions, adopting several shapes and levels of intensity. In addition, the segregation patterns are particularly sensitive to the values of the equilibrium partition coefficients of the alloy components.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02914651", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "keywords": [
          "nickel-based alloys", 
          "multicomponent alloys", 
          "thermosolutal convection", 
          "alloy components", 
          "dendritic solidification", 
          "numerical simulations", 
          "macrosegregation", 
          "alloy", 
          "equilibrium partition coefficient", 
          "mathematical model", 
          "convection", 
          "superalloy", 
          "solidification", 
          "simulations", 
          "coefficient", 
          "segregation patterns", 
          "partition coefficients", 
          "shape", 
          "conditions", 
          "model", 
          "components", 
          "results", 
          "values", 
          "addition", 
          "intensity", 
          "patterns", 
          "levels of intensity", 
          "levels"
        ], 
        "name": "Simulating convection and macrosegregation in superalloys", 
        "pagination": "21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034934142"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02914651"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02914651", 
          "https://app.dimensions.ai/details/publication/pub.1034934142"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_262.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02914651"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02914651'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02914651'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02914651'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02914651'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      61 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02914651 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N8b807a85e7ac43f38a06bebf1b730095
    4 schema:citation sg:pub.10.1007/bf02643435
    5 sg:pub.10.1007/bf02645156
    6 sg:pub.10.1007/bf02646605
    7 sg:pub.10.1007/bf02651162
    8 sg:pub.10.1007/bf02652503
    9 sg:pub.10.1007/bf02654312
    10 sg:pub.10.1007/bf02671251
    11 sg:pub.10.1007/bf02811556
    12 schema:datePublished 1997-03
    13 schema:datePublishedReg 1997-03-01
    14 schema:description Numerical simulations using a mathematical model of the dendritic solidification of multicomponent alloys that includes thermosolutal convection and macrosegregation were conducted on nickel-based alloys. The results show that segregation patterns vary greatly with cooling conditions, adopting several shapes and levels of intensity. In addition, the segregation patterns are particularly sensitive to the values of the equilibrium partition coefficients of the alloy components.
    15 schema:genre article
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N00832b29cf0f4280bb23c2e6019219d7
    18 Na5f84ae4c8424e04a54523fee0f06bb4
    19 sg:journal.1042541
    20 schema:keywords addition
    21 alloy
    22 alloy components
    23 coefficient
    24 components
    25 conditions
    26 convection
    27 dendritic solidification
    28 equilibrium partition coefficient
    29 intensity
    30 levels
    31 levels of intensity
    32 macrosegregation
    33 mathematical model
    34 model
    35 multicomponent alloys
    36 nickel-based alloys
    37 numerical simulations
    38 partition coefficients
    39 patterns
    40 results
    41 segregation patterns
    42 shape
    43 simulations
    44 solidification
    45 superalloy
    46 thermosolutal convection
    47 values
    48 schema:name Simulating convection and macrosegregation in superalloys
    49 schema:pagination 21
    50 schema:productId N2d95f192cbaf48d5b47597e58fed58c6
    51 N33bf8e7a12c64559af2fec13868de5af
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034934142
    53 https://doi.org/10.1007/bf02914651
    54 schema:sdDatePublished 2022-11-24T20:48
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nfd83dd093e1245af84fa67fdce03f326
    57 schema:url https://doi.org/10.1007/bf02914651
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N00832b29cf0f4280bb23c2e6019219d7 schema:issueNumber 3
    62 rdf:type schema:PublicationIssue
    63 N2d95f192cbaf48d5b47597e58fed58c6 schema:name doi
    64 schema:value 10.1007/bf02914651
    65 rdf:type schema:PropertyValue
    66 N33bf8e7a12c64559af2fec13868de5af schema:name dimensions_id
    67 schema:value pub.1034934142
    68 rdf:type schema:PropertyValue
    69 N3489a4638b5540c49c26fe2d6e7add67 rdf:first sg:person.015717554343.15
    70 rdf:rest N818a4726a27547e7b291e4b3ed55f3cf
    71 N6d9cede2fd844e89a75cb894b26858a2 rdf:first sg:person.016470251527.26
    72 rdf:rest rdf:nil
    73 N818a4726a27547e7b291e4b3ed55f3cf rdf:first sg:person.016370647001.98
    74 rdf:rest N6d9cede2fd844e89a75cb894b26858a2
    75 N8b807a85e7ac43f38a06bebf1b730095 rdf:first sg:person.013321272613.15
    76 rdf:rest N3489a4638b5540c49c26fe2d6e7add67
    77 Na5f84ae4c8424e04a54523fee0f06bb4 schema:volumeNumber 49
    78 rdf:type schema:PublicationVolume
    79 Nfd83dd093e1245af84fa67fdce03f326 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Engineering
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Materials Engineering
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1042541 schema:issn 1047-4838
    88 1543-1851
    89 schema:name JOM
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.013321272613.15 schema:familyName Felicelli
    93 schema:givenName S. D.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321272613.15
    95 rdf:type schema:Person
    96 sg:person.015717554343.15 schema:familyName Poirier
    97 schema:givenName D. R.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15
    99 rdf:type schema:Person
    100 sg:person.016370647001.98 schema:familyName Giamei
    101 schema:givenName A. F.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370647001.98
    103 rdf:type schema:Person
    104 sg:person.016470251527.26 schema:familyName Heinrich
    105 schema:givenName J. C.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470251527.26
    107 rdf:type schema:Person
    108 sg:pub.10.1007/bf02643435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027277476
    109 https://doi.org/10.1007/bf02643435
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf02645156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023616119
    112 https://doi.org/10.1007/bf02645156
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf02646605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098594
    115 https://doi.org/10.1007/bf02646605
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf02651162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022272390
    118 https://doi.org/10.1007/bf02651162
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf02652503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003691274
    121 https://doi.org/10.1007/bf02652503
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf02654312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037363216
    124 https://doi.org/10.1007/bf02654312
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf02671251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012835501
    127 https://doi.org/10.1007/bf02671251
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf02811556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033553450
    130 https://doi.org/10.1007/bf02811556
    131 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...