A sphaleron in the (3+1)-dimensional extended σ-model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

A. V. Shurgaia, H. J. W. Müller-Kirsten, D. H. Tchrakian

ABSTRACT

The σ-model in (3+1)-dimensions extended by addition of the quartic and sextic terms is investigated. In the presence of a symmetry-breaking potential the existence of both instanton and sphaleron configurations is shown. In order to obtain an explicit sphaleron solution, the sextic and potential terms are retained and the stability problem is studied. On the basis of general arguments the existence of a negative eigenvalue is proven and with some approximation calculated. More... »

PAGES

537-541

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02907438

DOI

http://dx.doi.org/10.1007/bf02907438

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044957779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shurgaia", 
        "givenName": "A. V.", 
        "id": "sg:person.011646771241.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011646771241.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller-Kirsten", 
        "givenName": "H. J. W.", 
        "id": "sg:person.015770013454.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770013454.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tchrakian", 
        "givenName": "D. H.", 
        "id": "sg:person.015677715153.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "The \u03c3-model in (3+1)-dimensions extended by addition of the quartic and sextic terms is investigated. In the presence of a symmetry-breaking potential the existence of both instanton and sphaleron configurations is shown. In order to obtain an explicit sphaleron solution, the sextic and potential terms are retained and the stability problem is studied. On the basis of general arguments the existence of a negative eigenvalue is proven and with some approximation calculated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02907438", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285003", 
        "issn": [
          "0170-9739", 
          "1431-5858"
        ], 
        "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "stability problem", 
      "sphaleron solutions", 
      "potential term", 
      "negative eigenvalues", 
      "symmetry-breaking potential", 
      "sphaleron configurations", 
      "existence", 
      "instantons", 
      "general argument", 
      "eigenvalues", 
      "approximation", 
      "model", 
      "addition", 
      "terms", 
      "presence", 
      "solution", 
      "problem", 
      "sextic terms", 
      "potential", 
      "sphalerons", 
      "order", 
      "basis", 
      "argument", 
      "configuration", 
      "explicit sphaleron solution"
    ], 
    "name": "A sphaleron in the (3+1)-dimensional extended \u03c3-model", 
    "pagination": "537-541", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044957779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02907438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02907438", 
      "https://app.dimensions.ai/details/publication/pub.1044957779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_296.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02907438"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02907438'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02907438'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02907438'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02907438'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      51 URIs      43 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02907438 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N484c498c780f4d5d82a63a526db431ca
4 schema:datePublished 1995-12
5 schema:datePublishedReg 1995-12-01
6 schema:description The σ-model in (3+1)-dimensions extended by addition of the quartic and sextic terms is investigated. In the presence of a symmetry-breaking potential the existence of both instanton and sphaleron configurations is shown. In order to obtain an explicit sphaleron solution, the sextic and potential terms are retained and the stability problem is studied. On the basis of general arguments the existence of a negative eigenvalue is proven and with some approximation calculated.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N082ee11f680e4a1f80325e5893df3e94
11 Nb97ecbd0c3794ebb96a3ae87f26ec0bc
12 sg:journal.1285003
13 schema:keywords addition
14 approximation
15 argument
16 basis
17 configuration
18 eigenvalues
19 existence
20 explicit sphaleron solution
21 general argument
22 instantons
23 model
24 negative eigenvalues
25 order
26 potential
27 potential term
28 presence
29 problem
30 sextic terms
31 solution
32 sphaleron configurations
33 sphaleron solutions
34 sphalerons
35 stability problem
36 symmetry-breaking potential
37 terms
38 schema:name A sphaleron in the (3+1)-dimensional extended σ-model
39 schema:pagination 537-541
40 schema:productId N0ba133e4dc0343368f1e9d9734e414c2
41 N5a10adc8510442ed85dac8ed4e42f205
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044957779
43 https://doi.org/10.1007/bf02907438
44 schema:sdDatePublished 2022-01-01T18:09
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8a2bfd5a467449a2ab9023cf41b56ee5
47 schema:url https://doi.org/10.1007/bf02907438
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N082ee11f680e4a1f80325e5893df3e94 schema:volumeNumber 69
52 rdf:type schema:PublicationVolume
53 N0ba133e4dc0343368f1e9d9734e414c2 schema:name dimensions_id
54 schema:value pub.1044957779
55 rdf:type schema:PropertyValue
56 N484c498c780f4d5d82a63a526db431ca rdf:first sg:person.011646771241.21
57 rdf:rest N665716b0cc264ed283f0dc1865ac291f
58 N4d0915d0fefc49829dd7f5b2fca6de15 rdf:first sg:person.015677715153.97
59 rdf:rest rdf:nil
60 N5a10adc8510442ed85dac8ed4e42f205 schema:name doi
61 schema:value 10.1007/bf02907438
62 rdf:type schema:PropertyValue
63 N665716b0cc264ed283f0dc1865ac291f rdf:first sg:person.015770013454.82
64 rdf:rest N4d0915d0fefc49829dd7f5b2fca6de15
65 N8a2bfd5a467449a2ab9023cf41b56ee5 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nb97ecbd0c3794ebb96a3ae87f26ec0bc schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1285003 schema:issn 0170-9739
76 1431-5858
77 schema:name Zeitschrift für Physik C Particles and Fields
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.011646771241.21 schema:affiliation grid-institutes:grid.7645.0
81 schema:familyName Shurgaia
82 schema:givenName A. V.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011646771241.21
84 rdf:type schema:Person
85 sg:person.015677715153.97 schema:affiliation grid-institutes:grid.7645.0
86 schema:familyName Tchrakian
87 schema:givenName D. H.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97
89 rdf:type schema:Person
90 sg:person.015770013454.82 schema:affiliation grid-institutes:grid.7645.0
91 schema:familyName Müller-Kirsten
92 schema:givenName H. J. W.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770013454.82
94 rdf:type schema:Person
95 grid-institutes:grid.7645.0 schema:alternateName Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany
96 schema:name Department of Physics, University of Kaiserslautern, D-67653, Kaiserslautern, Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...