Gauge theories and strong gravity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1979-04

AUTHORS

V. de Alfaro, S. Fubini, G. Furlan

ABSTRACT

We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to “strong gravitation». Instanton, meron and multimeron configurations are obtained and their properties discussed.

PAGES

523-554

References to SciGraph publications

  • 1976-08. A new approach to conformal invariant field theories in IL NUOVO CIMENTO A (1971-1996)
  • 1978-08. Solutions of invariant field equations in the (4, 1) de Sitter space in IL NUOVO CIMENTO A (1971-1996)
  • 1978-12. Nonlinear σ-models and classical solutions in IL NUOVO CIMENTO A (1971-1996)
  • Journal

    TITLE

    Il Nuovo Cimento A (1971-1996)

    ISSUE

    4

    VOLUME

    50

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02902558

    DOI

    http://dx.doi.org/10.1007/bf02902558

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014038441


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Alfaro", 
            "givenName": "V.", 
            "id": "sg:person.011016674353.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fubini", 
            "givenName": "S.", 
            "id": "sg:person.013207215753.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02896218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036328371", 
              "https://doi.org/10.1007/bf02896218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02776971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000249286", 
              "https://doi.org/10.1007/bf02776971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02785664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035940471", 
              "https://doi.org/10.1007/bf02785664"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-04", 
        "datePublishedReg": "1979-04-01", 
        "description": "We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to \u201cstrong gravitation\u00bb. Instanton, meron and multimeron configurations are obtained and their properties discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02902558", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336107", 
            "issn": [
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "keywords": [
          "Yang-Mills theory", 
          "nonlinear sigma model", 
          "classical solutions", 
          "sigma model", 
          "variable transformation", 
          "model invariant", 
          "gauge theory", 
          "theory", 
          "instantons", 
          "invariants", 
          "gravitation", 
          "merons", 
          "strong gravity", 
          "solution", 
          "model", 
          "gravity", 
          "transformation", 
          "detail", 
          "properties", 
          "configuration", 
          "cases", 
          "strong gravitation", 
          "field theoretical models invariant", 
          "theoretical models invariant", 
          "general variable transformations", 
          "four-dimensional nonlinear sigma model", 
          "multimeron configurations"
        ], 
        "name": "Gauge theories and strong gravity", 
        "pagination": "523-554", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014038441"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02902558"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02902558", 
          "https://app.dimensions.ai/details/publication/pub.1014038441"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_113.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02902558"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      22 PREDICATES      56 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02902558 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ne8edd3be594d4d6b9dd4a34821dacece
    4 schema:citation sg:pub.10.1007/bf02776971
    5 sg:pub.10.1007/bf02785664
    6 sg:pub.10.1007/bf02896218
    7 schema:datePublished 1979-04
    8 schema:datePublishedReg 1979-04-01
    9 schema:description We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to “strong gravitation». Instanton, meron and multimeron configurations are obtained and their properties discussed.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N0f066a7d304c441baaf814f891df8bf6
    14 N3309f889df9e42a59cf7839cf8472931
    15 sg:journal.1336107
    16 schema:keywords Yang-Mills theory
    17 cases
    18 classical solutions
    19 configuration
    20 detail
    21 field theoretical models invariant
    22 four-dimensional nonlinear sigma model
    23 gauge theory
    24 general variable transformations
    25 gravitation
    26 gravity
    27 instantons
    28 invariants
    29 merons
    30 model
    31 model invariant
    32 multimeron configurations
    33 nonlinear sigma model
    34 properties
    35 sigma model
    36 solution
    37 strong gravitation
    38 strong gravity
    39 theoretical models invariant
    40 theory
    41 transformation
    42 variable transformation
    43 schema:name Gauge theories and strong gravity
    44 schema:pagination 523-554
    45 schema:productId N14faf33911a842f6b38f0467c4361314
    46 Nc4fe520d28f34b57a1c8cd77f98efd3a
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014038441
    48 https://doi.org/10.1007/bf02902558
    49 schema:sdDatePublished 2021-12-01T19:02
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5480274546a34a618847001c06db3b85
    52 schema:url https://doi.org/10.1007/bf02902558
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0f066a7d304c441baaf814f891df8bf6 schema:volumeNumber 50
    57 rdf:type schema:PublicationVolume
    58 N14faf33911a842f6b38f0467c4361314 schema:name doi
    59 schema:value 10.1007/bf02902558
    60 rdf:type schema:PropertyValue
    61 N3309f889df9e42a59cf7839cf8472931 schema:issueNumber 4
    62 rdf:type schema:PublicationIssue
    63 N5480274546a34a618847001c06db3b85 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N81837467fed64caa980c7861454fec1b rdf:first sg:person.014625714377.67
    66 rdf:rest rdf:nil
    67 Nc4fe520d28f34b57a1c8cd77f98efd3a schema:name dimensions_id
    68 schema:value pub.1014038441
    69 rdf:type schema:PropertyValue
    70 Ne8edd3be594d4d6b9dd4a34821dacece rdf:first sg:person.011016674353.80
    71 rdf:rest Nfdb354fb32194738ae2ca3076cbe07a6
    72 Nfdb354fb32194738ae2ca3076cbe07a6 rdf:first sg:person.013207215753.76
    73 rdf:rest N81837467fed64caa980c7861454fec1b
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Applied Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1336107 schema:issn 1826-9869
    81 schema:name Il Nuovo Cimento A (1971-1996)
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.011016674353.80 schema:affiliation grid-institutes:grid.9132.9
    85 schema:familyName de Alfaro
    86 schema:givenName V.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80
    88 rdf:type schema:Person
    89 sg:person.013207215753.76 schema:affiliation grid-institutes:grid.9132.9
    90 schema:familyName Fubini
    91 schema:givenName S.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76
    93 rdf:type schema:Person
    94 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.9132.9
    95 schema:familyName Furlan
    96 schema:givenName G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf02776971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000249286
    100 https://doi.org/10.1007/bf02776971
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02785664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035940471
    103 https://doi.org/10.1007/bf02785664
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf02896218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036328371
    106 https://doi.org/10.1007/bf02896218
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva
    109 schema:name CERN, Geneva
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...