Gauge theories and strong gravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-04

AUTHORS

V. de Alfaro, S. Fubini, G. Furlan

ABSTRACT

We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to “strong gravitation». Instanton, meron and multimeron configurations are obtained and their properties discussed.

PAGES

523-554

References to SciGraph publications

  • 1976-08. A new approach to conformal invariant field theories in IL NUOVO CIMENTO A (1971-1996)
  • 1978-08. Solutions of invariant field equations in the (4, 1) de Sitter space in IL NUOVO CIMENTO A (1971-1996)
  • 1978-12. Nonlinear σ-models and classical solutions in IL NUOVO CIMENTO A (1971-1996)
  • Journal

    TITLE

    Il Nuovo Cimento A (1971-1996)

    ISSUE

    4

    VOLUME

    50

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02902558

    DOI

    http://dx.doi.org/10.1007/bf02902558

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014038441


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Alfaro", 
            "givenName": "V.", 
            "id": "sg:person.011016674353.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fubini", 
            "givenName": "S.", 
            "id": "sg:person.013207215753.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02896218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036328371", 
              "https://doi.org/10.1007/bf02896218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02776971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000249286", 
              "https://doi.org/10.1007/bf02776971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02785664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035940471", 
              "https://doi.org/10.1007/bf02785664"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-04", 
        "datePublishedReg": "1979-04-01", 
        "description": "We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to \u201cstrong gravitation\u00bb. Instanton, meron and multimeron configurations are obtained and their properties discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02902558", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336107", 
            "issn": [
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "keywords": [
          "nonlinear sigma model", 
          "Yang-Mills theory", 
          "sigma model", 
          "variable transformation", 
          "classical solutions", 
          "gauge theory", 
          "strong gravity", 
          "model invariant", 
          "strong gravitation", 
          "theory", 
          "instantons", 
          "gravitation", 
          "invariants", 
          "merons", 
          "gravity", 
          "solution", 
          "model", 
          "properties", 
          "configuration", 
          "transformation", 
          "detail", 
          "cases", 
          "field theoretical models invariant", 
          "theoretical models invariant", 
          "general variable transformations", 
          "four-dimensional nonlinear sigma model", 
          "multimeron configurations"
        ], 
        "name": "Gauge theories and strong gravity", 
        "pagination": "523-554", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014038441"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02902558"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02902558", 
          "https://app.dimensions.ai/details/publication/pub.1014038441"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_141.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02902558"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02902558'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      22 PREDICATES      56 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02902558 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N8a53edf1a8954eff89250ad9a3320f55
    4 schema:citation sg:pub.10.1007/bf02776971
    5 sg:pub.10.1007/bf02785664
    6 sg:pub.10.1007/bf02896218
    7 schema:datePublished 1979-04
    8 schema:datePublishedReg 1979-04-01
    9 schema:description We discuss in detail the classical solutions of two field theoretical models invariant under general variable transformations. In particular we examine the case of a Yang-Mills theory and of a four-dimensional nonlinear sigma model, both coupled to “strong gravitation». Instanton, meron and multimeron configurations are obtained and their properties discussed.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N3cae6771917f4f91a359445b4bec6441
    14 N40d6da1099204549a042a0c2b538aa4e
    15 sg:journal.1336107
    16 schema:keywords Yang-Mills theory
    17 cases
    18 classical solutions
    19 configuration
    20 detail
    21 field theoretical models invariant
    22 four-dimensional nonlinear sigma model
    23 gauge theory
    24 general variable transformations
    25 gravitation
    26 gravity
    27 instantons
    28 invariants
    29 merons
    30 model
    31 model invariant
    32 multimeron configurations
    33 nonlinear sigma model
    34 properties
    35 sigma model
    36 solution
    37 strong gravitation
    38 strong gravity
    39 theoretical models invariant
    40 theory
    41 transformation
    42 variable transformation
    43 schema:name Gauge theories and strong gravity
    44 schema:pagination 523-554
    45 schema:productId N09172f6b20c24edea76f07153514709b
    46 N2f6842570e874aa7b132388dc9f2c9ad
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014038441
    48 https://doi.org/10.1007/bf02902558
    49 schema:sdDatePublished 2022-01-01T18:01
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N22086a290f3f4f7bbdd331ad8aef4377
    52 schema:url https://doi.org/10.1007/bf02902558
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N09172f6b20c24edea76f07153514709b schema:name dimensions_id
    57 schema:value pub.1014038441
    58 rdf:type schema:PropertyValue
    59 N22086a290f3f4f7bbdd331ad8aef4377 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N2b920518d507430499405ffa07e4d4f3 rdf:first sg:person.013207215753.76
    62 rdf:rest Nd08a735e79e84aa2bc273606cab688f2
    63 N2f6842570e874aa7b132388dc9f2c9ad schema:name doi
    64 schema:value 10.1007/bf02902558
    65 rdf:type schema:PropertyValue
    66 N3cae6771917f4f91a359445b4bec6441 schema:volumeNumber 50
    67 rdf:type schema:PublicationVolume
    68 N40d6da1099204549a042a0c2b538aa4e schema:issueNumber 4
    69 rdf:type schema:PublicationIssue
    70 N8a53edf1a8954eff89250ad9a3320f55 rdf:first sg:person.011016674353.80
    71 rdf:rest N2b920518d507430499405ffa07e4d4f3
    72 Nd08a735e79e84aa2bc273606cab688f2 rdf:first sg:person.014625714377.67
    73 rdf:rest rdf:nil
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Applied Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1336107 schema:issn 1826-9869
    81 schema:name Il Nuovo Cimento A (1971-1996)
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.011016674353.80 schema:affiliation grid-institutes:grid.9132.9
    85 schema:familyName de Alfaro
    86 schema:givenName V.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80
    88 rdf:type schema:Person
    89 sg:person.013207215753.76 schema:affiliation grid-institutes:grid.9132.9
    90 schema:familyName Fubini
    91 schema:givenName S.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76
    93 rdf:type schema:Person
    94 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.9132.9
    95 schema:familyName Furlan
    96 schema:givenName G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf02776971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000249286
    100 https://doi.org/10.1007/bf02776971
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02785664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035940471
    103 https://doi.org/10.1007/bf02785664
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf02896218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036328371
    106 https://doi.org/10.1007/bf02896218
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva
    109 schema:name CERN, Geneva
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...