On the electrical equivalent circuits of gravitational-wave antennas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-06

AUTHORS

G. V. Pallottino, G. Pizzella

ABSTRACT

The electrical equivalent circuit of a Weber gravitational-wave antenna with piezoelectric transducers is derived for the various longitudinal normal modes by using the Lagrangian formalism. The analysis is applied to the antenna without piezoelectric ceramics, as well as with one or more ceramics operated in both passive and active mode. Particular attention is given to the dissipation problem in order to obtain an expression of the overall merit factor directly related to the physics of the actual dissipation processes. As an example the results are applied to a cylindrical bar with two ceramics: one for calibrating the antenna, the other as sensor of the motion. The values of the physical parameters and of the pertinent parameters of the equivalent circuit for the small antenna (20 kg) and those (predicted) for the intermediate antenna (390 kg) of the Rome group are given in the appendix. More... »

PAGES

275-296

References to SciGraph publications

  • 1975-07. Gravitational-radiation experiments in LA RIVISTA DEL NUOVO CIMENTO (1971-1977)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02894685

    DOI

    http://dx.doi.org/10.1007/bf02894685

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009331633


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Fisica dell\u2019 Universit\u00e0, Roma", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Laboratorio Plasma Spazio del CNR, Frascati", 
                "Istituto di Fisica dell\u2019 Universit\u00e0, Roma"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pallottino", 
            "givenName": "G. V.", 
            "id": "sg:person.016503762715.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Fisica dell\u2019 Universit\u00e0, Roma", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Laboratorio Plasma Spazio del CNR, Frascati", 
                "Istituto di Fisica dell\u2019 Universit\u00e0, Roma"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pizzella", 
            "givenName": "G.", 
            "id": "sg:person.016536750112.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02747568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018104415", 
              "https://doi.org/10.1007/bf02747568"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1978-06", 
        "datePublishedReg": "1978-06-01", 
        "description": "The electrical equivalent circuit of a Weber gravitational-wave antenna with piezoelectric transducers is derived for the various longitudinal normal modes by using the Lagrangian formalism. The analysis is applied to the antenna without piezoelectric ceramics, as well as with one or more ceramics operated in both passive and active mode. Particular attention is given to the dissipation problem in order to obtain an expression of the overall merit factor directly related to the physics of the actual dissipation processes. As an example the results are applied to a cylindrical bar with two ceramics: one for calibrating the antenna, the other as sensor of the motion. The values of the physical parameters and of the pertinent parameters of the equivalent circuit for the small antenna (20 kg) and those (predicted) for the intermediate antenna (390 kg) of the Rome group are given in the appendix.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02894685", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336108", 
            "issn": [
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "keywords": [
          "electrical equivalent circuit", 
          "equivalent circuit", 
          "piezoelectric ceramics", 
          "piezoelectric transducers", 
          "gravitational-wave antenna", 
          "longitudinal normal modes", 
          "pertinent parameters", 
          "dissipation problem", 
          "cylindrical bar", 
          "ceramics", 
          "dissipation processes", 
          "Rome group", 
          "physical parameters", 
          "small antennas", 
          "merit factor", 
          "circuit", 
          "antenna", 
          "active mode", 
          "sensors", 
          "bar", 
          "parameters", 
          "mode", 
          "transducer", 
          "normal modes", 
          "Lagrangian formalism", 
          "motion", 
          "particular attention", 
          "process", 
          "order", 
          "physics", 
          "results", 
          "problem", 
          "values", 
          "example", 
          "analysis", 
          "attention", 
          "formalism", 
          "factors", 
          "appendix", 
          "group", 
          "expression", 
          "Weber gravitational-wave antenna", 
          "more ceramics", 
          "overall merit factor", 
          "actual dissipation processes", 
          "intermediate antenna"
        ], 
        "name": "On the electrical equivalent circuits of gravitational-wave antennas", 
        "pagination": "275-296", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009331633"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02894685"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02894685", 
          "https://app.dimensions.ai/details/publication/pub.1009331633"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_134.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02894685"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02894685'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02894685'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02894685'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02894685'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      22 PREDICATES      73 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02894685 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author Na5def081a2404d4fa4ae9731034505bd
    4 schema:citation sg:pub.10.1007/bf02747568
    5 schema:datePublished 1978-06
    6 schema:datePublishedReg 1978-06-01
    7 schema:description The electrical equivalent circuit of a Weber gravitational-wave antenna with piezoelectric transducers is derived for the various longitudinal normal modes by using the Lagrangian formalism. The analysis is applied to the antenna without piezoelectric ceramics, as well as with one or more ceramics operated in both passive and active mode. Particular attention is given to the dissipation problem in order to obtain an expression of the overall merit factor directly related to the physics of the actual dissipation processes. As an example the results are applied to a cylindrical bar with two ceramics: one for calibrating the antenna, the other as sensor of the motion. The values of the physical parameters and of the pertinent parameters of the equivalent circuit for the small antenna (20 kg) and those (predicted) for the intermediate antenna (390 kg) of the Rome group are given in the appendix.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nba146fa263e04471a5e545cf0bc8d47a
    12 Nd9474da8fe974e0e830a521e1e49d06b
    13 sg:journal.1336108
    14 schema:keywords Lagrangian formalism
    15 Rome group
    16 Weber gravitational-wave antenna
    17 active mode
    18 actual dissipation processes
    19 analysis
    20 antenna
    21 appendix
    22 attention
    23 bar
    24 ceramics
    25 circuit
    26 cylindrical bar
    27 dissipation problem
    28 dissipation processes
    29 electrical equivalent circuit
    30 equivalent circuit
    31 example
    32 expression
    33 factors
    34 formalism
    35 gravitational-wave antenna
    36 group
    37 intermediate antenna
    38 longitudinal normal modes
    39 merit factor
    40 mode
    41 more ceramics
    42 motion
    43 normal modes
    44 order
    45 overall merit factor
    46 parameters
    47 particular attention
    48 pertinent parameters
    49 physical parameters
    50 physics
    51 piezoelectric ceramics
    52 piezoelectric transducers
    53 problem
    54 process
    55 results
    56 sensors
    57 small antennas
    58 transducer
    59 values
    60 schema:name On the electrical equivalent circuits of gravitational-wave antennas
    61 schema:pagination 275-296
    62 schema:productId N5b1bef1d62b741a883d9559a039eb6ac
    63 N5f4e3198ba584fcc87fe73c90dc1f7eb
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009331633
    65 https://doi.org/10.1007/bf02894685
    66 schema:sdDatePublished 2021-11-01T17:54
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N885948f821c4490b861a06f55c1c6663
    69 schema:url https://doi.org/10.1007/bf02894685
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N5b1bef1d62b741a883d9559a039eb6ac schema:name doi
    74 schema:value 10.1007/bf02894685
    75 rdf:type schema:PropertyValue
    76 N5f4e3198ba584fcc87fe73c90dc1f7eb schema:name dimensions_id
    77 schema:value pub.1009331633
    78 rdf:type schema:PropertyValue
    79 N885948f821c4490b861a06f55c1c6663 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Na5def081a2404d4fa4ae9731034505bd rdf:first sg:person.016503762715.72
    82 rdf:rest Nef7e4e1767754e50990c7944c5a0c428
    83 Nba146fa263e04471a5e545cf0bc8d47a schema:volumeNumber 45
    84 rdf:type schema:PublicationVolume
    85 Nd9474da8fe974e0e830a521e1e49d06b schema:issueNumber 2
    86 rdf:type schema:PublicationIssue
    87 Nef7e4e1767754e50990c7944c5a0c428 rdf:first sg:person.016536750112.16
    88 rdf:rest rdf:nil
    89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Technology
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Communications Technologies
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1336108 schema:issn 1826-9877
    96 schema:name Il Nuovo Cimento B (1971-1996)
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.016503762715.72 schema:affiliation grid-institutes:grid.7841.a
    100 schema:familyName Pallottino
    101 schema:givenName G. V.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72
    103 rdf:type schema:Person
    104 sg:person.016536750112.16 schema:affiliation grid-institutes:grid.7841.a
    105 schema:familyName Pizzella
    106 schema:givenName G.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16
    108 rdf:type schema:Person
    109 sg:pub.10.1007/bf02747568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018104415
    110 https://doi.org/10.1007/bf02747568
    111 rdf:type schema:CreativeWork
    112 grid-institutes:grid.7841.a schema:alternateName Istituto di Fisica dell’ Università, Roma
    113 schema:name Istituto di Fisica dell’ Università, Roma
    114 Laboratorio Plasma Spazio del CNR, Frascati
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...