Complexity, rate of energy exchanges and stochasticity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-02

AUTHORS

M. Casartelli, S. Sello

ABSTRACT

The complexity of trajectories in the phase space of anharmonic crystals (mostly a Lennard-Jones chain) is analysed by the variance of microcanonical density and by new parametersP and ϰ defined, respectively, as the mean value of the time averages and the relative variance of the absolute exchange rate of energies among the normal modes. Evidence is given to the trapping action of residual invariant surfaces in low stochastic regime of motion. The parameter ϰ, moreover, proves efficient in exploring the border of stochasticity. A simple power law forP vs. the specific energy is obtained and proved to be independent of stochasticity and of the type of anharmonic potential. More... »

PAGES

183-199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02888819

DOI

http://dx.doi.org/10.1007/bf02888819

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022919169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica dell\u2019 Universit\u00e0, Sezione Teorica e Unit\u00e0 Risonanze Magnetiche del G.N.S.M., Parma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casartelli", 
        "givenName": "M.", 
        "id": "sg:person.015225266142.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica dell\u2019 Universit\u00e0, Parma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sello", 
        "givenName": "S.", 
        "id": "sg:person.016016360422.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016016360422.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987-02", 
    "datePublishedReg": "1987-02-01", 
    "description": "The complexity of trajectories in the phase space of anharmonic crystals (mostly a Lennard-Jones chain) is analysed by the variance of microcanonical density and by new parametersP and \u03f0 defined, respectively, as the mean value of the time averages and the relative variance of the absolute exchange rate of energies among the normal modes. Evidence is given to the trapping action of residual invariant surfaces in low stochastic regime of motion. The parameter \u03f0, moreover, proves efficient in exploring the border of stochasticity. A simple power law forP vs. the specific energy is obtained and proved to be independent of stochasticity and of the type of anharmonic potential.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02888819", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "97"
      }
    ], 
    "name": "Complexity, rate of energy exchanges and stochasticity", 
    "pagination": "183-199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d311345c5a3bea78d1e1c8fb8ae4cb695a5a4e6f024b9111ca8b231636b5eb0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02888819"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022919169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02888819", 
      "https://app.dimensions.ai/details/publication/pub.1022919169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02888819"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02888819'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02888819'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02888819'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02888819'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02888819 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9a25ccfe4c0340d9a348cf2a01e7e2b9
4 schema:datePublished 1987-02
5 schema:datePublishedReg 1987-02-01
6 schema:description The complexity of trajectories in the phase space of anharmonic crystals (mostly a Lennard-Jones chain) is analysed by the variance of microcanonical density and by new parametersP and ϰ defined, respectively, as the mean value of the time averages and the relative variance of the absolute exchange rate of energies among the normal modes. Evidence is given to the trapping action of residual invariant surfaces in low stochastic regime of motion. The parameter ϰ, moreover, proves efficient in exploring the border of stochasticity. A simple power law forP vs. the specific energy is obtained and proved to be independent of stochasticity and of the type of anharmonic potential.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N50bdd422b71147ad9c790f350fae315b
11 N9f49cfdf548549769909e3ffbf505fe2
12 sg:journal.1336108
13 schema:name Complexity, rate of energy exchanges and stochasticity
14 schema:pagination 183-199
15 schema:productId N3e6d12681fd74409b61194aa2f0c086c
16 N3fa81d929cad4ae6a443ba002ac3bfa1
17 N4a695251fcf24507ace51718f484a215
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022919169
19 https://doi.org/10.1007/bf02888819
20 schema:sdDatePublished 2019-04-10T19:52
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4d1f2b4ac1284b0aa83e768aaf253be5
23 schema:url http://link.springer.com/10.1007/BF02888819
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N2f0951ed2fbd4df6b9a7cac46dbe8da0 schema:name Dipartimento di Fisica dell’ Università, Parma, Italia
28 rdf:type schema:Organization
29 N3b5aca956e004f5c84a92759d9cf782d schema:name Dipartimento di Fisica dell’ Università, Sezione Teorica e Unità Risonanze Magnetiche del G.N.S.M., Parma, Italia
30 rdf:type schema:Organization
31 N3e6d12681fd74409b61194aa2f0c086c schema:name readcube_id
32 schema:value 6d311345c5a3bea78d1e1c8fb8ae4cb695a5a4e6f024b9111ca8b231636b5eb0
33 rdf:type schema:PropertyValue
34 N3fa81d929cad4ae6a443ba002ac3bfa1 schema:name doi
35 schema:value 10.1007/bf02888819
36 rdf:type schema:PropertyValue
37 N4a695251fcf24507ace51718f484a215 schema:name dimensions_id
38 schema:value pub.1022919169
39 rdf:type schema:PropertyValue
40 N4d1f2b4ac1284b0aa83e768aaf253be5 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N50bdd422b71147ad9c790f350fae315b schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 N7a535c5e4dd5401886252cd393a70b56 rdf:first sg:person.016016360422.77
45 rdf:rest rdf:nil
46 N9a25ccfe4c0340d9a348cf2a01e7e2b9 rdf:first sg:person.015225266142.12
47 rdf:rest N7a535c5e4dd5401886252cd393a70b56
48 N9f49cfdf548549769909e3ffbf505fe2 schema:volumeNumber 97
49 rdf:type schema:PublicationVolume
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1336108 schema:issn 1826-9877
57 schema:name Il Nuovo Cimento B (1971-1996)
58 rdf:type schema:Periodical
59 sg:person.015225266142.12 schema:affiliation N3b5aca956e004f5c84a92759d9cf782d
60 schema:familyName Casartelli
61 schema:givenName M.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12
63 rdf:type schema:Person
64 sg:person.016016360422.77 schema:affiliation N2f0951ed2fbd4df6b9a7cac46dbe8da0
65 schema:familyName Sello
66 schema:givenName S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016016360422.77
68 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...