Likelihood and the Bayes procedure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-02

AUTHORS

Hirotugu Akaike

ABSTRACT

In this paper the likelihood function is considered to be the primary source of the objectivity of a Bayesian method. The necessity of using the expected behavior of the likelihood function for the choice of the prior distribution is emphasized. Numerical examples, including seasonal adjustment of time series, are given to illustrate the practical utility of the common-sense approach to Bayesian statistics proposed in this paper. More... »

PAGES

143-166

References to SciGraph publications

  • 1980-12. Ignorance prior distribution of a hyperparameter and Stein's estimator in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1978-12. A Bayesian analysis of the minimum AIC procedure in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02888350

    DOI

    http://dx.doi.org/10.1007/bf02888350

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040070636


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research Organization of Information and Systems", 
              "id": "https://www.grid.ac/institutes/grid.418987.b", 
              "name": [
                "The Institute of Statistical Mathematics, Tokyo"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akaike", 
            "givenName": "Hirotugu", 
            "id": "sg:person.013642526773.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642526773.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02480322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001654823", 
              "https://doi.org/10.1007/bf02480322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02480194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042693900", 
              "https://doi.org/10.1007/bf02480194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02480194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042693900", 
              "https://doi.org/10.1007/bf02480194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176344136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044872629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1957.10501399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/44.1-2.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059416618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/65.1.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/66.2.237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1974.1100705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1403075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069473452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1909890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069638932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1914096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069641197"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-02", 
        "datePublishedReg": "1980-02-01", 
        "description": "In this paper the likelihood function is considered to be the primary source of the objectivity of a Bayesian method. The necessity of using the expected behavior of the likelihood function for the choice of the prior distribution is emphasized. Numerical examples, including seasonal adjustment of time series, are given to illustrate the practical utility of the common-sense approach to Bayesian statistics proposed in this paper.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02888350", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1121158", 
            "issn": [
              "0041-0241"
            ], 
            "name": "Trabajos de estad\u00edstica y de investigaci\u00f3n operativa", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Likelihood and the Bayes procedure", 
        "pagination": "143-166", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bee1e4284706d520a1e051ade1e6476ffa9b1b82895e6286c189e9482449ef36"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02888350"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040070636"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02888350", 
          "https://app.dimensions.ai/details/publication/pub.1040070636"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02888350"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02888350'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02888350'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02888350'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02888350'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02888350 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N764bd4bf3c7a4bb0b8a60ba159050b71
    4 schema:citation sg:pub.10.1007/bf02480194
    5 sg:pub.10.1007/bf02480322
    6 https://doi.org/10.1080/01621459.1957.10501399
    7 https://doi.org/10.1093/biomet/44.1-2.187
    8 https://doi.org/10.1093/biomet/65.1.53
    9 https://doi.org/10.1093/biomet/66.2.237
    10 https://doi.org/10.1109/tac.1974.1100705
    11 https://doi.org/10.1214/aos/1176344136
    12 https://doi.org/10.2307/1403075
    13 https://doi.org/10.2307/1909890
    14 https://doi.org/10.2307/1914096
    15 schema:datePublished 1980-02
    16 schema:datePublishedReg 1980-02-01
    17 schema:description In this paper the likelihood function is considered to be the primary source of the objectivity of a Bayesian method. The necessity of using the expected behavior of the likelihood function for the choice of the prior distribution is emphasized. Numerical examples, including seasonal adjustment of time series, are given to illustrate the practical utility of the common-sense approach to Bayesian statistics proposed in this paper.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N3bbbabddcf5b4882a03a275c08eb6958
    22 Nf72afccb49b643a59b0b6d9e60635e7c
    23 sg:journal.1121158
    24 schema:name Likelihood and the Bayes procedure
    25 schema:pagination 143-166
    26 schema:productId N4c7ac56426ff4df9b1bc5de7a569fcaf
    27 N52427085d6e14387915b8a54fde51e63
    28 Nc846f6bf178d453885596e17073ae781
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040070636
    30 https://doi.org/10.1007/bf02888350
    31 schema:sdDatePublished 2019-04-11T13:53
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N1916b953d38f484fa5555c5a1ea3e520
    34 schema:url http://link.springer.com/10.1007%2FBF02888350
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N1916b953d38f484fa5555c5a1ea3e520 schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N3bbbabddcf5b4882a03a275c08eb6958 schema:issueNumber 1
    41 rdf:type schema:PublicationIssue
    42 N4c7ac56426ff4df9b1bc5de7a569fcaf schema:name dimensions_id
    43 schema:value pub.1040070636
    44 rdf:type schema:PropertyValue
    45 N52427085d6e14387915b8a54fde51e63 schema:name readcube_id
    46 schema:value bee1e4284706d520a1e051ade1e6476ffa9b1b82895e6286c189e9482449ef36
    47 rdf:type schema:PropertyValue
    48 N764bd4bf3c7a4bb0b8a60ba159050b71 rdf:first sg:person.013642526773.14
    49 rdf:rest rdf:nil
    50 Nc846f6bf178d453885596e17073ae781 schema:name doi
    51 schema:value 10.1007/bf02888350
    52 rdf:type schema:PropertyValue
    53 Nf72afccb49b643a59b0b6d9e60635e7c schema:volumeNumber 31
    54 rdf:type schema:PublicationVolume
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Statistics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1121158 schema:issn 0041-0241
    62 schema:name Trabajos de estadística y de investigación operativa
    63 rdf:type schema:Periodical
    64 sg:person.013642526773.14 schema:affiliation https://www.grid.ac/institutes/grid.418987.b
    65 schema:familyName Akaike
    66 schema:givenName Hirotugu
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642526773.14
    68 rdf:type schema:Person
    69 sg:pub.10.1007/bf02480194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042693900
    70 https://doi.org/10.1007/bf02480194
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/bf02480322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001654823
    73 https://doi.org/10.1007/bf02480322
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1080/01621459.1957.10501399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299365
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1093/biomet/44.1-2.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416618
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1093/biomet/65.1.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418734
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1093/biomet/66.2.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418849
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.2307/1403075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473452
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.2307/1909890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069638932
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.2307/1914096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069641197
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.418987.b schema:alternateName Research Organization of Information and Systems
    94 schema:name The Institute of Statistical Mathematics, Tokyo
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...