Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-02

AUTHORS

J. P. Hsu

ABSTRACT

The Finsler geometry is a more suitable framework for physics than the Riemannian geometry. Both electromagnetism and gravity can be geometrized such that the electrogravitational phenomena are consequences of a curved Finsler space-time with a local gauge symmetry. The fundamental metric tensor Gij(x, x) depends on a particle’s position xi and velocity xi:Gij(x, x) = (1 −bAk(x)xk/a)2 gij(x), wherea = (- gij(x)xixj)1/2 andb = e/mc2. Furthermore, all 〈classical〉 field equations of electro-gravity can be derived from an invariant action function involving the curvature tensor, Cijkh = fδihFjk+ Hijkh, of the Finsler space-time. The results of such a geometrization are consistent with experiments. They show that the usual concept of a flat space-time with an additional electromagnetic field is physically equivalent to that of a curved Finsler space-time with the metric tensor Gij(x, x) in which gij(x) is replaced by constant ηij. More... »

PAGES

183-195

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02874409

DOI

http://dx.doi.org/10.1007/bf02874409

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040227303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Department, National Taiwan University, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Physics Department, University of Massachusetts Dartmouth, 02747, North Dartmouth, MA", 
            "Mathematics Department, National Taiwan University, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "J. P.", 
        "id": "sg:person.014301222742.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-51610-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674939", 
          "https://doi.org/10.1007/978-3-642-51610-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-02", 
    "datePublishedReg": "1993-02-01", 
    "description": "The Finsler geometry is a more suitable framework for physics than the Riemannian geometry. Both electromagnetism and gravity can be geometrized such that the electrogravitational phenomena are consequences of a curved Finsler space-time with a local gauge symmetry. The fundamental metric tensor Gij(x, x) depends on a particle\u2019s position xi and velocity xi:Gij(x, x) = (1 \u2212bAk(x)xk/a)2 gij(x), wherea = (- gij(x)xixj)1/2 andb = e/mc2. Furthermore, all \u3008classical\u3009 field equations of electro-gravity can be derived from an invariant action function involving the curvature tensor, Cijkh = f\u03b4ihFjk+ Hijkh, of the Finsler space-time. The results of such a geometrization are consistent with experiments. They show that the usual concept of a flat space-time with an additional electromagnetic field is physically equivalent to that of a curved Finsler space-time with the metric tensor Gij(x, x) in which gij(x) is replaced by constant \u03b7ij.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02874409", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "keywords": [
      "metric tensor", 
      "position xi", 
      "gauge symmetry", 
      "Geometrization of electromagnetism", 
      "additional electromagnetic field", 
      "local gauge symmetry", 
      "fundamental metric tensor", 
      "Riemannian geometry", 
      "field equations", 
      "Finsler geometry", 
      "curvature tensor", 
      "action function", 
      "Finsler", 
      "electromagnetic field", 
      "usual concept", 
      "geometrization", 
      "electromagnetism", 
      "tensor", 
      "symmetry", 
      "gravity", 
      "geometry", 
      "suitable framework", 
      "equations", 
      "physics", 
      "\u03b7ij", 
      "andb", 
      "field", 
      "XI", 
      "MC2", 
      "phenomenon", 
      "framework", 
      "function", 
      "whereas", 
      "concept", 
      "experiments", 
      "results", 
      "consequences"
    ], 
    "name": "Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry", 
    "pagination": "183-195", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040227303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02874409"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02874409", 
      "https://app.dimensions.ai/details/publication/pub.1040227303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_225.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02874409"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02874409'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02874409'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02874409'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02874409'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      63 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02874409 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0341d44bc1cc41508b15e4aed7252844
4 schema:citation sg:pub.10.1007/978-3-642-51610-8
5 schema:datePublished 1993-02
6 schema:datePublishedReg 1993-02-01
7 schema:description The Finsler geometry is a more suitable framework for physics than the Riemannian geometry. Both electromagnetism and gravity can be geometrized such that the electrogravitational phenomena are consequences of a curved Finsler space-time with a local gauge symmetry. The fundamental metric tensor Gij(x, x) depends on a particle’s position xi and velocity xi:Gij(x, x) = (1 −bAk(x)xk/a)2 gij(x), wherea = (- gij(x)xixj)1/2 andb = e/mc2. Furthermore, all 〈classical〉 field equations of electro-gravity can be derived from an invariant action function involving the curvature tensor, Cijkh = fδihFjk+ Hijkh, of the Finsler space-time. The results of such a geometrization are consistent with experiments. They show that the usual concept of a flat space-time with an additional electromagnetic field is physically equivalent to that of a curved Finsler space-time with the metric tensor Gij(x, x) in which gij(x) is replaced by constant ηij.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf Na376984d0862442f88f263f30ea0ba7b
11 Nb4f13b60653f4d55bf1e1249b5555e28
12 sg:journal.1336108
13 schema:keywords Finsler
14 Finsler geometry
15 Geometrization of electromagnetism
16 MC2
17 Riemannian geometry
18 XI
19 action function
20 additional electromagnetic field
21 andb
22 concept
23 consequences
24 curvature tensor
25 electromagnetic field
26 electromagnetism
27 equations
28 experiments
29 field
30 field equations
31 framework
32 function
33 fundamental metric tensor
34 gauge symmetry
35 geometrization
36 geometry
37 gravity
38 local gauge symmetry
39 metric tensor
40 phenomenon
41 physics
42 position xi
43 results
44 suitable framework
45 symmetry
46 tensor
47 usual concept
48 whereas
49 ηij
50 schema:name Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry
51 schema:pagination 183-195
52 schema:productId N26aa82ee41b5450c966122f770917ad3
53 N879a7e077d8d459faeb3ba7740c81b15
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040227303
55 https://doi.org/10.1007/bf02874409
56 schema:sdDatePublished 2022-09-02T15:47
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N1b65a27b61fa420fb5a3c2bff35291ef
59 schema:url https://doi.org/10.1007/bf02874409
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0341d44bc1cc41508b15e4aed7252844 rdf:first sg:person.014301222742.62
64 rdf:rest rdf:nil
65 N1b65a27b61fa420fb5a3c2bff35291ef schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N26aa82ee41b5450c966122f770917ad3 schema:name doi
68 schema:value 10.1007/bf02874409
69 rdf:type schema:PropertyValue
70 N879a7e077d8d459faeb3ba7740c81b15 schema:name dimensions_id
71 schema:value pub.1040227303
72 rdf:type schema:PropertyValue
73 Na376984d0862442f88f263f30ea0ba7b schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 Nb4f13b60653f4d55bf1e1249b5555e28 schema:volumeNumber 108
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1336108 schema:issn 1826-9877
84 schema:name Il Nuovo Cimento B (1971-1996)
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.014301222742.62 schema:affiliation grid-institutes:grid.19188.39
88 schema:familyName Hsu
89 schema:givenName J. P.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62
91 rdf:type schema:Person
92 sg:pub.10.1007/978-3-642-51610-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674939
93 https://doi.org/10.1007/978-3-642-51610-8
94 rdf:type schema:CreativeWork
95 grid-institutes:grid.19188.39 schema:alternateName Mathematics Department, National Taiwan University, Taiwan
96 schema:name Mathematics Department, National Taiwan University, Taiwan
97 Physics Department, University of Massachusetts Dartmouth, 02747, North Dartmouth, MA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...