On the collective properties of a boson system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1958-10

AUTHORS

J. G. Valatin, D. Butler

ABSTRACT

A method in close correspondence with the theory of super-conductivity of Bardeen, Cooper and Schrieffer is applied to a boson system, extending an earlier approach byBogolubov. Minimizing the energy with respect to a trial ground state vector of exponential form, new equations and expressions are derived for the excitation spectrum of bosons. The expressions are in a one to one correspondence with those for fermions, from which formally they differ only through signs. The physical content of the expressions is, however, very different. Equations with a predominantly repulsive interaction which in the fermion case have no collective solutions, lead to such solutions for bosons because of a partial Bose-Einstein condensation. It is pointed out that the method is related to a linearization of the quantized matter field equations. Temperature dependent equations are obtained by the same methods as in the theory of superconductivity. The λ-point is defined by the disappearance of the partial Bose-Einstein condensation. More... »

PAGES

37-54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02859603

DOI

http://dx.doi.org/10.1007/bf02859603

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022925082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematical Physics, University of Birmingham, Birmingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valatin", 
        "givenName": "J. G.", 
        "id": "sg:person.016326750451.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326750451.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematical Physics, University of Birmingham, Birmingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butler", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02745585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016604408", 
          "https://doi.org/10.1007/bf02745585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02745585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016604408", 
          "https://doi.org/10.1007/bf02745585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02745589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890272", 
          "https://doi.org/10.1007/bf02745589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02745589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890272", 
          "https://doi.org/10.1007/bf02745589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460910"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1958-10", 
    "datePublishedReg": "1958-10-01", 
    "description": "A method in close correspondence with the theory of super-conductivity of Bardeen, Cooper and Schrieffer is applied to a boson system, extending an earlier approach byBogolubov. Minimizing the energy with respect to a trial ground state vector of exponential form, new equations and expressions are derived for the excitation spectrum of bosons. The expressions are in a one to one correspondence with those for fermions, from which formally they differ only through signs. The physical content of the expressions is, however, very different. Equations with a predominantly repulsive interaction which in the fermion case have no collective solutions, lead to such solutions for bosons because of a partial Bose-Einstein condensation. It is pointed out that the method is related to a linearization of the quantized matter field equations. Temperature dependent equations are obtained by the same methods as in the theory of superconductivity. The \u03bb-point is defined by the disappearance of the partial Bose-Einstein condensation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02859603", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336106", 
        "issn": [
          "1827-6121"
        ], 
        "name": "Il Nuovo Cimento (1955-1965)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "On the collective properties of a boson system", 
    "pagination": "37-54", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d38425c792bbd4b6fa39d98f4895c76305cd8a1d407c18f8ced4c6dac3ca604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02859603"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022925082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02859603", 
      "https://app.dimensions.ai/details/publication/pub.1022925082"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02859603"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02859603'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02859603'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02859603'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02859603'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02859603 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nd946fc73d9d44ae0b81d2a94c5360956
4 schema:citation sg:pub.10.1007/bf02745585
5 sg:pub.10.1007/bf02745589
6 https://doi.org/10.1103/physrev.104.576
7 https://doi.org/10.1103/physrev.106.1135
8 https://doi.org/10.1103/physrev.108.1175
9 https://doi.org/10.1103/physrev.91.1291
10 schema:datePublished 1958-10
11 schema:datePublishedReg 1958-10-01
12 schema:description A method in close correspondence with the theory of super-conductivity of Bardeen, Cooper and Schrieffer is applied to a boson system, extending an earlier approach byBogolubov. Minimizing the energy with respect to a trial ground state vector of exponential form, new equations and expressions are derived for the excitation spectrum of bosons. The expressions are in a one to one correspondence with those for fermions, from which formally they differ only through signs. The physical content of the expressions is, however, very different. Equations with a predominantly repulsive interaction which in the fermion case have no collective solutions, lead to such solutions for bosons because of a partial Bose-Einstein condensation. It is pointed out that the method is related to a linearization of the quantized matter field equations. Temperature dependent equations are obtained by the same methods as in the theory of superconductivity. The λ-point is defined by the disappearance of the partial Bose-Einstein condensation.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N73ebbae739204ba19f81f2db28288f74
17 N80bd2f53440047f9894a20f83b6a55c7
18 sg:journal.1336106
19 schema:name On the collective properties of a boson system
20 schema:pagination 37-54
21 schema:productId N2e38a26795834be2998fc9e5df05cdca
22 N9c7a3084a8004e9e931222c790b09615
23 Ncdf2271a63bb444c9cd742a0666dd522
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022925082
25 https://doi.org/10.1007/bf02859603
26 schema:sdDatePublished 2019-04-11T13:55
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N71468ca7477d4342aafd53ab0053a126
29 schema:url http://link.springer.com/10.1007/BF02859603
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N2e38a26795834be2998fc9e5df05cdca schema:name doi
34 schema:value 10.1007/bf02859603
35 rdf:type schema:PropertyValue
36 N36e78172e0b54d4ba42ff426ab76603a schema:affiliation Nd2d060382c984b308029db686868711f
37 schema:familyName Butler
38 schema:givenName D.
39 rdf:type schema:Person
40 N5bf98ebcd9e04a8ab51f0dc718ff4b0b schema:name Department of Mathematical Physics, University of Birmingham, Birmingham
41 rdf:type schema:Organization
42 N71468ca7477d4342aafd53ab0053a126 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N73ebbae739204ba19f81f2db28288f74 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N80bd2f53440047f9894a20f83b6a55c7 schema:volumeNumber 10
47 rdf:type schema:PublicationVolume
48 N9c7a3084a8004e9e931222c790b09615 schema:name dimensions_id
49 schema:value pub.1022925082
50 rdf:type schema:PropertyValue
51 Ncdf2271a63bb444c9cd742a0666dd522 schema:name readcube_id
52 schema:value 6d38425c792bbd4b6fa39d98f4895c76305cd8a1d407c18f8ced4c6dac3ca604
53 rdf:type schema:PropertyValue
54 Nd2d060382c984b308029db686868711f schema:name Department of Mathematical Physics, University of Birmingham, Birmingham
55 rdf:type schema:Organization
56 Nd946fc73d9d44ae0b81d2a94c5360956 rdf:first sg:person.016326750451.21
57 rdf:rest Nf73c7558f4214e0bb5e9b3c6d03da792
58 Nf73c7558f4214e0bb5e9b3c6d03da792 rdf:first N36e78172e0b54d4ba42ff426ab76603a
59 rdf:rest rdf:nil
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
64 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1336106 schema:issn 1827-6121
67 schema:name Il Nuovo Cimento (1955-1965)
68 rdf:type schema:Periodical
69 sg:person.016326750451.21 schema:affiliation N5bf98ebcd9e04a8ab51f0dc718ff4b0b
70 schema:familyName Valatin
71 schema:givenName J. G.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326750451.21
73 rdf:type schema:Person
74 sg:pub.10.1007/bf02745585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016604408
75 https://doi.org/10.1007/bf02745585
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02745589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890272
78 https://doi.org/10.1007/bf02745589
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrev.104.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418287
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrev.106.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418787
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrev.108.1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039060951
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrev.91.1291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460910
87 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...