Finitely additive measures on groups and rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-06

AUTHORS

Sophie Frisch, Milan Paštéka, Robert F. Tichy, Reinhard Winkler

ABSTRACT

On topological groups a natural finitely additive measure can be defined via compactifications. It is closely related to Hartman's concept of uniform distribution on non-compact groups (cf. [3]). Applications to several situations are possible. Some results of M. Paštéka and other authors on uniform distribution with respect to translation invariant finitely additive probability measures on Dedekind domains are transferred to more general situations. Furthermore it is shown that the range of a polynomial of degree ≥2 on a ring of algebraic integers has measure 0. More... »

PAGES

323-340

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02857307

DOI

http://dx.doi.org/10.1007/bf02857307

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012289361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Sophie", 
        "id": "sg:person.016547712522.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547712522.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sciences, University of Ostrava, Brafova 7, CZ-70103, Ostrava, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.412684.d", 
          "name": [
            "Faculty of Sciences, University of Ostrava, Brafova 7, CZ-70103, Ostrava, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pa\u0161t\u00e9ka", 
        "givenName": "Milan", 
        "id": "sg:person.01257672021.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257672021.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Diskrete Mathematik, Austrian Academy of Sciences, Dr.-Ignaz-Scipel-Platz 2, A-1010, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4299.6", 
          "name": [
            "Institut f\u00fcr Algebra und Computermathematik, TU Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040, Wien, Austria", 
            "Institut f\u00fcr Diskrete Mathematik, Austrian Academy of Sciences, Dr.-Ignaz-Scipel-Platz 2, A-1010, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "Reinhard", 
        "id": "sg:person.012406476665.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406476665.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02834520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085996612", 
          "https://doi.org/10.1007/bf02834520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02950653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044677620", 
          "https://doi.org/10.1007/bf02950653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8638-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028066486", 
          "https://doi.org/10.1007/978-1-4419-8638-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01153578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780588", 
          "https://doi.org/10.1007/bf01153578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0078604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264503", 
          "https://doi.org/10.1007/bfb0078604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96045-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048597684", 
          "https://doi.org/10.1007/978-3-642-96045-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-06", 
    "datePublishedReg": "1999-06-01", 
    "description": "On topological groups a natural finitely additive measure can be defined via compactifications. It is closely related to Hartman's concept of uniform distribution on non-compact groups (cf. [3]). Applications to several situations are possible. Some results of M. Pa\u0161t\u00e9ka and other authors on uniform distribution with respect to translation invariant finitely additive probability measures on Dedekind domains are transferred to more general situations. Furthermore it is shown that the range of a polynomial of degree \u22652 on a ring of algebraic integers has measure 0.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02857307", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136673", 
        "issn": [
          "0009-725X", 
          "1973-4409"
        ], 
        "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "non-compact groups", 
      "additive measures", 
      "additive probability measures", 
      "more general situations", 
      "polynomials of degree", 
      "probability measure", 
      "topological group", 
      "algebraic integers", 
      "translation invariant", 
      "general situation", 
      "uniform distribution", 
      "measure 0", 
      "Dedekind domain", 
      "compactification", 
      "invariants", 
      "polynomials", 
      "integers", 
      "distribution", 
      "concept", 
      "applications", 
      "situation", 
      "ring", 
      "respect", 
      "domain", 
      "measures", 
      "results", 
      "range", 
      "degree", 
      "authors", 
      "group", 
      "Hartman's concept", 
      "Pa\u0161t\u00e9ka"
    ], 
    "name": "Finitely additive measures on groups and rings", 
    "pagination": "323-340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012289361"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02857307"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02857307", 
      "https://app.dimensions.ai/details/publication/pub.1012289361"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_322.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02857307"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02857307'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02857307'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02857307'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02857307'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      64 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02857307 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N99a1e3006e6c46e3968f1df71699b802
4 schema:citation sg:pub.10.1007/978-1-4419-8638-2
5 sg:pub.10.1007/978-3-642-96045-1
6 sg:pub.10.1007/bf01153578
7 sg:pub.10.1007/bf02834520
8 sg:pub.10.1007/bf02950653
9 sg:pub.10.1007/bfb0078604
10 schema:datePublished 1999-06
11 schema:datePublishedReg 1999-06-01
12 schema:description On topological groups a natural finitely additive measure can be defined via compactifications. It is closely related to Hartman's concept of uniform distribution on non-compact groups (cf. [3]). Applications to several situations are possible. Some results of M. Paštéka and other authors on uniform distribution with respect to translation invariant finitely additive probability measures on Dedekind domains are transferred to more general situations. Furthermore it is shown that the range of a polynomial of degree ≥2 on a ring of algebraic integers has measure 0.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5cdbb052830a4aeeafb101474c70f22c
17 Nf6064b4d89f842558c516d5211565004
18 sg:journal.1136673
19 schema:keywords Dedekind domain
20 Hartman's concept
21 Paštéka
22 additive measures
23 additive probability measures
24 algebraic integers
25 applications
26 authors
27 compactification
28 concept
29 degree
30 distribution
31 domain
32 general situation
33 group
34 integers
35 invariants
36 measure 0
37 measures
38 more general situations
39 non-compact groups
40 polynomials
41 polynomials of degree
42 probability measure
43 range
44 respect
45 results
46 ring
47 situation
48 topological group
49 translation invariant
50 uniform distribution
51 schema:name Finitely additive measures on groups and rings
52 schema:pagination 323-340
53 schema:productId Na3c4fe74a30b4bbaa3482d21f67f38db
54 Na7438367f5f54d72b5e4be067ca2dec1
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289361
56 https://doi.org/10.1007/bf02857307
57 schema:sdDatePublished 2022-01-01T18:10
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N370a56c31e6544698bb31ef8f728c835
60 schema:url https://doi.org/10.1007/bf02857307
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N1966a7a7c40641c898e244da0d6db63f rdf:first sg:person.015312676677.43
65 rdf:rest N76488a57a53a4093acc61c37ed991669
66 N370a56c31e6544698bb31ef8f728c835 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N4d8a75037e8946ae8ffa3e8c078b2127 rdf:first sg:person.01257672021.71
69 rdf:rest N1966a7a7c40641c898e244da0d6db63f
70 N5cdbb052830a4aeeafb101474c70f22c schema:volumeNumber 48
71 rdf:type schema:PublicationVolume
72 N76488a57a53a4093acc61c37ed991669 rdf:first sg:person.012406476665.19
73 rdf:rest rdf:nil
74 N99a1e3006e6c46e3968f1df71699b802 rdf:first sg:person.016547712522.21
75 rdf:rest N4d8a75037e8946ae8ffa3e8c078b2127
76 Na3c4fe74a30b4bbaa3482d21f67f38db schema:name dimensions_id
77 schema:value pub.1012289361
78 rdf:type schema:PropertyValue
79 Na7438367f5f54d72b5e4be067ca2dec1 schema:name doi
80 schema:value 10.1007/bf02857307
81 rdf:type schema:PropertyValue
82 Nf6064b4d89f842558c516d5211565004 schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136673 schema:issn 0009-725X
91 1973-4409
92 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.012406476665.19 schema:affiliation grid-institutes:grid.4299.6
96 schema:familyName Winkler
97 schema:givenName Reinhard
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406476665.19
99 rdf:type schema:Person
100 sg:person.01257672021.71 schema:affiliation grid-institutes:grid.412684.d
101 schema:familyName Paštéka
102 schema:givenName Milan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257672021.71
104 rdf:type schema:Person
105 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.410413.3
106 schema:familyName Tichy
107 schema:givenName Robert F.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
109 rdf:type schema:Person
110 sg:person.016547712522.21 schema:affiliation grid-institutes:grid.410413.3
111 schema:familyName Frisch
112 schema:givenName Sophie
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547712522.21
114 rdf:type schema:Person
115 sg:pub.10.1007/978-1-4419-8638-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028066486
116 https://doi.org/10.1007/978-1-4419-8638-2
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-96045-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048597684
119 https://doi.org/10.1007/978-3-642-96045-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01153578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007780588
122 https://doi.org/10.1007/bf01153578
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02834520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085996612
125 https://doi.org/10.1007/bf02834520
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02950653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044677620
128 https://doi.org/10.1007/bf02950653
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bfb0078604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264503
131 https://doi.org/10.1007/bfb0078604
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.410413.3 schema:alternateName Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria
134 schema:name Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria
135 rdf:type schema:Organization
136 grid-institutes:grid.412684.d schema:alternateName Faculty of Sciences, University of Ostrava, Brafova 7, CZ-70103, Ostrava, Czech Republic
137 schema:name Faculty of Sciences, University of Ostrava, Brafova 7, CZ-70103, Ostrava, Czech Republic
138 rdf:type schema:Organization
139 grid-institutes:grid.4299.6 schema:alternateName Institut für Diskrete Mathematik, Austrian Academy of Sciences, Dr.-Ignaz-Scipel-Platz 2, A-1010, Wien, Austria
140 schema:name Institut für Algebra und Computermathematik, TU Wien, Wiedner Hauptstraße 8-10, A-1040, Wien, Austria
141 Institut für Diskrete Mathematik, Austrian Academy of Sciences, Dr.-Ignaz-Scipel-Platz 2, A-1010, Wien, Austria
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...