Residue-squaring iterative diagonalization method for perturbation problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-02

AUTHORS

P M Mathews

ABSTRACT

We present a new method for the evaluation of the change in eigenvalues due to a perturbation of strength λ. It is a fast converging iterative method which, at thenth step, gives results accurate to order (2n+1−1) in λ. Unlike the Rayleigh-Schrödinger perturbation theory in quantum mechanics, which becomes prohibitively cumbersome when carried to higher orders, the present method involves a routine which remains stralghtforward at all stages. More... »

PAGES

53-54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02848035

DOI

http://dx.doi.org/10.1007/bf02848035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009579708


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, University of Madras, 600025, Madras", 
          "id": "http://www.grid.ac/institutes/grid.413015.2", 
          "name": [
            "Department of Theoretical Physics, University of Madras, 600025, Madras"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathews", 
        "givenName": "P M", 
        "id": "sg:person.010500055331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500055331.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1975-02", 
    "datePublishedReg": "1975-02-01", 
    "description": "We present a new method for the evaluation of the change in eigenvalues due to a perturbation of strength \u03bb. It is a fast converging iterative method which, at thenth step, gives results accurate to order (2n+1\u22121) in \u03bb. Unlike the Rayleigh-Schr\u00f6dinger perturbation theory in quantum mechanics, which becomes prohibitively cumbersome when carried to higher orders, the present method involves a routine which remains stralghtforward at all stages.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02848035", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "iterative diagonalization method", 
      "perturbation problem", 
      "iterative method", 
      "quantum mechanics", 
      "higher order", 
      "Rayleigh-Schr\u00f6dinger perturbation theory", 
      "perturbation theory", 
      "diagonalization method", 
      "present method", 
      "new method", 
      "strength \u03bb", 
      "eigenvalues", 
      "mechanics", 
      "problem", 
      "perturbations", 
      "theory", 
      "routines", 
      "step", 
      "order", 
      "results", 
      "evaluation", 
      "stage", 
      "changes", 
      "method", 
      "thenth step", 
      "Residue-squaring iterative diagonalization method"
    ], 
    "name": "Residue-squaring iterative diagonalization method for perturbation problems", 
    "pagination": "53-54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009579708"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02848035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02848035", 
      "https://app.dimensions.ai/details/publication/pub.1009579708"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_117.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02848035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02848035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02848035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02848035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02848035'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      52 URIs      44 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02848035 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N842e611228a540588e36d2c91468d3f7
4 schema:datePublished 1975-02
5 schema:datePublishedReg 1975-02-01
6 schema:description We present a new method for the evaluation of the change in eigenvalues due to a perturbation of strength λ. It is a fast converging iterative method which, at thenth step, gives results accurate to order (2n+1−1) in λ. Unlike the Rayleigh-Schrödinger perturbation theory in quantum mechanics, which becomes prohibitively cumbersome when carried to higher orders, the present method involves a routine which remains stralghtforward at all stages.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1c701e0de718492897ead981ba681bfd
11 Nc90b5ccf9e5f4f93805bc95f4b695156
12 sg:journal.1036186
13 schema:keywords Rayleigh-Schrödinger perturbation theory
14 Residue-squaring iterative diagonalization method
15 changes
16 diagonalization method
17 eigenvalues
18 evaluation
19 higher order
20 iterative diagonalization method
21 iterative method
22 mechanics
23 method
24 new method
25 order
26 perturbation problem
27 perturbation theory
28 perturbations
29 present method
30 problem
31 quantum mechanics
32 results
33 routines
34 stage
35 step
36 strength λ
37 thenth step
38 theory
39 schema:name Residue-squaring iterative diagonalization method for perturbation problems
40 schema:pagination 53-54
41 schema:productId N05b25125f7e44834aa5c41eb766c179d
42 Nadf9538d050b4b58a438d5fbd5fb44ad
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009579708
44 https://doi.org/10.1007/bf02848035
45 schema:sdDatePublished 2021-12-01T19:02
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nf011fa8fab7e469a847a150316d7ce84
48 schema:url https://doi.org/10.1007/bf02848035
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N05b25125f7e44834aa5c41eb766c179d schema:name dimensions_id
53 schema:value pub.1009579708
54 rdf:type schema:PropertyValue
55 N1c701e0de718492897ead981ba681bfd schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N842e611228a540588e36d2c91468d3f7 rdf:first sg:person.010500055331.42
58 rdf:rest rdf:nil
59 Nadf9538d050b4b58a438d5fbd5fb44ad schema:name doi
60 schema:value 10.1007/bf02848035
61 rdf:type schema:PropertyValue
62 Nc90b5ccf9e5f4f93805bc95f4b695156 schema:volumeNumber 4
63 rdf:type schema:PublicationVolume
64 Nf011fa8fab7e469a847a150316d7ce84 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
70 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
71 rdf:type schema:DefinedTerm
72 sg:journal.1036186 schema:issn 0304-4289
73 0973-7111
74 schema:name Pramana
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.010500055331.42 schema:affiliation grid-institutes:grid.413015.2
78 schema:familyName Mathews
79 schema:givenName P M
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500055331.42
81 rdf:type schema:Person
82 grid-institutes:grid.413015.2 schema:alternateName Department of Theoretical Physics, University of Madras, 600025, Madras
83 schema:name Department of Theoretical Physics, University of Madras, 600025, Madras
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...