Lebesgue decomposition by σ-null-additive set functions using ideals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-01

AUTHORS

Paolo De Lucia, Endre Pap

ABSTRACT

Using V. Ficker’s and P. Capek’s algebraic approach by ideals a Lebesgue decomposition theorem for a wide class of non-additive set functions called null-additive set functions is obtained. In special cases decompositions theorems for ⊕-decomposable measures andk-triangular set functions are obtained.

PAGES

25-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02845087

DOI

http://dx.doi.org/10.1007/bf02845087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022066270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Matematica e Applicazioni, Universit\u00e0 Federico II, Complesso Monte S. Angelo via Cintia, 80126, Napoli, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Lucia", 
        "givenName": "Paolo", 
        "id": "sg:person.014225467413.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225467413.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovic\u00e1 4, 21000, Novi Sad, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0004972700041484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002443496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(90)90207-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004792105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(90)90207-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004792105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(84)90243-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009816573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(91)90136-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014316428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(91)90136-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014316428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700008375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021850354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700008375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021850354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(87)90354-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029317826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(84)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045785383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-63-03060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064417708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-27-2-319-321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091814631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-38-2-243-253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092012533"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-01", 
    "datePublishedReg": "1996-01-01", 
    "description": "Using V. Ficker\u2019s and P. Capek\u2019s algebraic approach by ideals a Lebesgue decomposition theorem for a wide class of non-additive set functions called null-additive set functions is obtained. In special cases decompositions theorems for \u2295-decomposable measures andk-triangular set functions are obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02845087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136673", 
        "issn": [
          "0009-725X", 
          "1973-4409"
        ], 
        "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Lebesgue decomposition by \u03c3-null-additive set functions using ideals", 
    "pagination": "25-36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "692139857d4062425a4262630280c15d3367fb8b1e05759e13883e1b27813098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02845087"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022066270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02845087", 
      "https://app.dimensions.ai/details/publication/pub.1022066270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02845087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02845087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02845087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02845087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02845087'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02845087 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N72fcccf26e0a40dc8424b0ef7268b293
4 schema:citation https://doi.org/10.1016/0022-247x(84)90061-1
5 https://doi.org/10.1016/0022-247x(84)90243-9
6 https://doi.org/10.1016/0022-247x(87)90354-4
7 https://doi.org/10.1016/0165-0114(90)90207-m
8 https://doi.org/10.1016/0165-0114(91)90136-e
9 https://doi.org/10.1017/s0004972700041484
10 https://doi.org/10.1017/s1446788700008375
11 https://doi.org/10.1215/s0012-7094-63-03060-6
12 https://doi.org/10.4064/cm-27-2-319-321
13 https://doi.org/10.4064/cm-38-2-243-253
14 schema:datePublished 1996-01
15 schema:datePublishedReg 1996-01-01
16 schema:description Using V. Ficker’s and P. Capek’s algebraic approach by ideals a Lebesgue decomposition theorem for a wide class of non-additive set functions called null-additive set functions is obtained. In special cases decompositions theorems for ⊕-decomposable measures andk-triangular set functions are obtained.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N92b90fee8c26453f9c228ddaf7dd35d9
21 Nec66df67075544e79e1c97f3b99af0ba
22 sg:journal.1136673
23 schema:name Lebesgue decomposition by σ-null-additive set functions using ideals
24 schema:pagination 25-36
25 schema:productId N07149eedfba44d51aa97b81d56e60f81
26 N4fa732be145c44599fe8ead31140a008
27 N9438c12d31e04db9b73f13306148a803
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022066270
29 https://doi.org/10.1007/bf02845087
30 schema:sdDatePublished 2019-04-10T20:50
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N9db6ec360e264ccd9e55750beda698c8
33 schema:url http://link.springer.com/10.1007%2FBF02845087
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N07149eedfba44d51aa97b81d56e60f81 schema:name readcube_id
38 schema:value 692139857d4062425a4262630280c15d3367fb8b1e05759e13883e1b27813098
39 rdf:type schema:PropertyValue
40 N4fa732be145c44599fe8ead31140a008 schema:name doi
41 schema:value 10.1007/bf02845087
42 rdf:type schema:PropertyValue
43 N5052f6c77a7b44ada827ddb43593e320 rdf:first sg:person.012354470173.10
44 rdf:rest rdf:nil
45 N72fcccf26e0a40dc8424b0ef7268b293 rdf:first sg:person.014225467413.47
46 rdf:rest N5052f6c77a7b44ada827ddb43593e320
47 N92b90fee8c26453f9c228ddaf7dd35d9 schema:volumeNumber 45
48 rdf:type schema:PublicationVolume
49 N9438c12d31e04db9b73f13306148a803 schema:name dimensions_id
50 schema:value pub.1022066270
51 rdf:type schema:PropertyValue
52 N9db6ec360e264ccd9e55750beda698c8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Na1726e54503a434daf0dfa990154a7cf schema:name Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovicá 4, 21000, Novi Sad, Yugoslavia
55 rdf:type schema:Organization
56 Nec66df67075544e79e1c97f3b99af0ba schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136673 schema:issn 0009-725X
65 1973-4409
66 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
67 rdf:type schema:Periodical
68 sg:person.012354470173.10 schema:affiliation Na1726e54503a434daf0dfa990154a7cf
69 schema:familyName Pap
70 schema:givenName Endre
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
72 rdf:type schema:Person
73 sg:person.014225467413.47 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
74 schema:familyName De Lucia
75 schema:givenName Paolo
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225467413.47
77 rdf:type schema:Person
78 https://doi.org/10.1016/0022-247x(84)90061-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045785383
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0022-247x(84)90243-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009816573
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0022-247x(87)90354-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029317826
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0165-0114(90)90207-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1004792105
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0165-0114(91)90136-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1014316428
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0004972700041484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002443496
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s1446788700008375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021850354
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1215/s0012-7094-63-03060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064417708
93 rdf:type schema:CreativeWork
94 https://doi.org/10.4064/cm-27-2-319-321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091814631
95 rdf:type schema:CreativeWork
96 https://doi.org/10.4064/cm-38-2-243-253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092012533
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
99 schema:name Dipartimento di Matematica e Applicazioni, Università Federico II, Complesso Monte S. Angelo via Cintia, 80126, Napoli, Italia
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...