Conical Embeddings of Steiner systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-02

AUTHORS

Dieter Jungnickel, Scott A. Vanstone

ABSTRACT

Any classicalS(3,2a+1;2ab+1) is embedded intoPG(2,2ab) as point set one may use any conic, the blocks being determined by subplanes of order 2a. Consequently, every classicalS(3,2a+1;2ab+1) is naturally embedded intoPG(2,K) whereK is the algebraic closure ofGF(2).

PAGES

90-94

References to SciGraph publications

  • 1937-12. über Steinersche Systeme in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02844701

    DOI

    http://dx.doi.org/10.1007/bf02844701

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042770957


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut, Justus-Liebig-Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany", 
              "id": "http://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut, Justus-Liebig-Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "Scott A.", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02948948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027200132", 
              "https://doi.org/10.1007/bf02948948"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-02", 
        "datePublishedReg": "1987-02-01", 
        "description": "Any classicalS(3,2a+1;2ab+1) is embedded intoPG(2,2ab) as point set one may use any conic, the blocks being determined by subplanes of order 2a. Consequently, every classicalS(3,2a+1;2ab+1) is naturally embedded intoPG(2,K) whereK is the algebraic closure ofGF(2).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02844701", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136673", 
            "issn": [
              "0009-725X", 
              "1973-4409"
            ], 
            "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "point", 
          "block", 
          "Steiner systems", 
          "system", 
          "conics", 
          "wherek", 
          "algebraic closure", 
          "closure", 
          "embedding", 
          "subplane", 
          "order 2a"
        ], 
        "name": "Conical Embeddings of Steiner systems", 
        "pagination": "90-94", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042770957"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02844701"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02844701", 
          "https://app.dimensions.ai/details/publication/pub.1042770957"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_198.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02844701"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02844701'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02844701'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02844701'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02844701'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      21 PREDICATES      37 URIs      28 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02844701 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ncd71288b100945ef80ab1fd872364382
    4 schema:citation sg:pub.10.1007/bf02948948
    5 schema:datePublished 1987-02
    6 schema:datePublishedReg 1987-02-01
    7 schema:description Any classicalS(3,2a+1;2ab+1) is embedded intoPG(2,2ab) as point set one may use any conic, the blocks being determined by subplanes of order 2a. Consequently, every classicalS(3,2a+1;2ab+1) is naturally embedded intoPG(2,K) whereK is the algebraic closure ofGF(2).
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N077b03576eee40b5aba5eee790333dbc
    11 N7f9aa2eac6ec4ab5869c043510d68c04
    12 sg:journal.1136673
    13 schema:keywords Steiner systems
    14 algebraic closure
    15 block
    16 closure
    17 conics
    18 embedding
    19 order 2a
    20 point
    21 subplane
    22 system
    23 wherek
    24 schema:name Conical Embeddings of Steiner systems
    25 schema:pagination 90-94
    26 schema:productId N728929c33fd74768a04e2033995fed2e
    27 Nc5560a5082a342ba8cfce76d3674cbb4
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042770957
    29 https://doi.org/10.1007/bf02844701
    30 schema:sdDatePublished 2022-09-02T15:46
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N0fe5a3dd0e5c4391be401fa1ee274035
    33 schema:url https://doi.org/10.1007/bf02844701
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N077b03576eee40b5aba5eee790333dbc schema:volumeNumber 36
    38 rdf:type schema:PublicationVolume
    39 N0fe5a3dd0e5c4391be401fa1ee274035 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N34d76a267b8e4ae9b036b0ccf49ff24b rdf:first sg:person.010344544767.07
    42 rdf:rest rdf:nil
    43 N728929c33fd74768a04e2033995fed2e schema:name doi
    44 schema:value 10.1007/bf02844701
    45 rdf:type schema:PropertyValue
    46 N7f9aa2eac6ec4ab5869c043510d68c04 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 Nc5560a5082a342ba8cfce76d3674cbb4 schema:name dimensions_id
    49 schema:value pub.1042770957
    50 rdf:type schema:PropertyValue
    51 Ncd71288b100945ef80ab1fd872364382 rdf:first sg:person.016273474670.91
    52 rdf:rest N34d76a267b8e4ae9b036b0ccf49ff24b
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Pure Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1136673 schema:issn 0009-725X
    60 1973-4409
    61 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
    62 schema:publisher Springer Nature
    63 rdf:type schema:Periodical
    64 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    65 schema:familyName Vanstone
    66 schema:givenName Scott A.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    68 rdf:type schema:Person
    69 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.8664.c
    70 schema:familyName Jungnickel
    71 schema:givenName Dieter
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf02948948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027200132
    75 https://doi.org/10.1007/bf02948948
    76 rdf:type schema:CreativeWork
    77 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    78 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    79 rdf:type schema:Organization
    80 grid-institutes:grid.8664.c schema:alternateName Mathematisches Institut, Justus-Liebig-Universität Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany
    81 schema:name Mathematisches Institut, Justus-Liebig-Universität Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...