Correlations between topological features and physicochemical properties of molecules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-08

AUTHORS

D. V. S. Jain, Sukhbir Singh, Vijay Gombar

ABSTRACT

The article reviews in brief, thede novo group additivity approach and, at length, the different topological approaches to obtain predictive and internally consistent correlations between various properties and structural features of molecules. The stress has mainly been on the molecular connectivity method. A new rational scheme for nomenclature of connectivity indices of different orders and types is introduced. The concept of the perturbation connectivity parameter developed by us recently has been applied to obtain correlations for molar refraction, boiling point, molar volume, heat of atomisation, heat of combustion, heat of vaporisation, magnetic susceptibility and critical constants of alkanes, alcohols and alkylbenzenes. A comparative study of various approaches reveals that the present perturbation topological approach has an edge over other similar methods. More... »

PAGES

927-945

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02840338

DOI

http://dx.doi.org/10.1007/bf02840338

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086155958


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Panjab University, 160 014, Chandigarh, India", 
          "id": "http://www.grid.ac/institutes/grid.261674.0", 
          "name": [
            "Department of Chemistry, Panjab University, 160 014, Chandigarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "D. V. S.", 
        "id": "sg:person.0711055211.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711055211.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Panjab University, 160 014, Chandigarh, India", 
          "id": "http://www.grid.ac/institutes/grid.261674.0", 
          "name": [
            "Department of Chemistry, Panjab University, 160 014, Chandigarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Sukhbir", 
        "id": "sg:person.014505130213.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505130213.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutical Sciences, Panjab University, 160 014, Chandigarh, India", 
          "id": "http://www.grid.ac/institutes/grid.261674.0", 
          "name": [
            "Department of Chemistry, Panjab University, 160 014, Chandigarh, India", 
            "Department of Pharmaceutical Sciences, Panjab University, 160 014, Chandigarh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gombar", 
        "givenName": "Vijay", 
        "id": "sg:person.0702304172.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702304172.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00466597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009553865", 
          "https://doi.org/10.1007/bf00466597"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-08", 
    "datePublishedReg": "1984-08-01", 
    "description": "The article reviews in brief, thede novo group additivity approach and, at length, the different topological approaches to obtain predictive and internally consistent correlations between various properties and structural features of molecules. The stress has mainly been on the molecular connectivity method. A new rational scheme for nomenclature of connectivity indices of different orders and types is introduced. The concept of the perturbation connectivity parameter developed by us recently has been applied to obtain correlations for molar refraction, boiling point, molar volume, heat of atomisation, heat of combustion, heat of vaporisation, magnetic susceptibility and critical constants of alkanes, alcohols and alkylbenzenes. A comparative study of various approaches reveals that the present perturbation topological approach has an edge over other similar methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02840338", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048512", 
        "issn": [
          "0253-4134", 
          "0973-7103"
        ], 
        "name": "Journal of Chemical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "keywords": [
      "topological approach", 
      "consistent correlation", 
      "correlation", 
      "connectivity methods", 
      "magnetic susceptibility", 
      "molecular connectivity method", 
      "topological features", 
      "comparative study", 
      "connectivity parameters", 
      "susceptibility", 
      "rational scheme", 
      "different orders", 
      "index", 
      "heats of atomisation", 
      "critical constants", 
      "study", 
      "alcohol", 
      "similar methods", 
      "features", 
      "connectivity index", 
      "volume", 
      "molecules", 
      "stress", 
      "approach", 
      "nomenclature", 
      "refraction", 
      "properties", 
      "method", 
      "scheme", 
      "types", 
      "length", 
      "heat of vaporisation", 
      "parameters", 
      "heat", 
      "edge", 
      "article", 
      "point", 
      "constants", 
      "structural features", 
      "physicochemical properties", 
      "order", 
      "concept", 
      "boiling point", 
      "molar refraction", 
      "molar volume", 
      "vaporisation", 
      "combustion", 
      "additivity approach", 
      "atomisation", 
      "alkanes", 
      "group additivity approach", 
      "heat of combustion", 
      "alkylbenzenes", 
      "thede novo group additivity approach", 
      "novo group additivity approach", 
      "different topological approaches", 
      "new rational scheme", 
      "perturbation connectivity parameter", 
      "present perturbation topological approach", 
      "perturbation topological approach"
    ], 
    "name": "Correlations between topological features and physicochemical properties of molecules", 
    "pagination": "927-945", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086155958"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02840338"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02840338", 
      "https://app.dimensions.ai/details/publication/pub.1086155958"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_157.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02840338"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02840338'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02840338'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02840338'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02840338'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      85 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02840338 schema:about anzsrc-for:03
2 schema:author N148cf0687454412d8ecf32d1864b3ecb
3 schema:citation sg:pub.10.1007/bf00466597
4 schema:datePublished 1984-08
5 schema:datePublishedReg 1984-08-01
6 schema:description The article reviews in brief, thede novo group additivity approach and, at length, the different topological approaches to obtain predictive and internally consistent correlations between various properties and structural features of molecules. The stress has mainly been on the molecular connectivity method. A new rational scheme for nomenclature of connectivity indices of different orders and types is introduced. The concept of the perturbation connectivity parameter developed by us recently has been applied to obtain correlations for molar refraction, boiling point, molar volume, heat of atomisation, heat of combustion, heat of vaporisation, magnetic susceptibility and critical constants of alkanes, alcohols and alkylbenzenes. A comparative study of various approaches reveals that the present perturbation topological approach has an edge over other similar methods.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N71f90d81fca34ebf933d88a829f5e58a
11 Nb3df741bc21c473aa94af7b0952d88a8
12 sg:journal.1048512
13 schema:keywords additivity approach
14 alcohol
15 alkanes
16 alkylbenzenes
17 approach
18 article
19 atomisation
20 boiling point
21 combustion
22 comparative study
23 concept
24 connectivity index
25 connectivity methods
26 connectivity parameters
27 consistent correlation
28 constants
29 correlation
30 critical constants
31 different orders
32 different topological approaches
33 edge
34 features
35 group additivity approach
36 heat
37 heat of combustion
38 heat of vaporisation
39 heats of atomisation
40 index
41 length
42 magnetic susceptibility
43 method
44 molar refraction
45 molar volume
46 molecular connectivity method
47 molecules
48 new rational scheme
49 nomenclature
50 novo group additivity approach
51 order
52 parameters
53 perturbation connectivity parameter
54 perturbation topological approach
55 physicochemical properties
56 point
57 present perturbation topological approach
58 properties
59 rational scheme
60 refraction
61 scheme
62 similar methods
63 stress
64 structural features
65 study
66 susceptibility
67 thede novo group additivity approach
68 topological approach
69 topological features
70 types
71 vaporisation
72 volume
73 schema:name Correlations between topological features and physicochemical properties of molecules
74 schema:pagination 927-945
75 schema:productId N0dc3164702964f1082bfab5e9b397713
76 Nf76dfe7de1a24496bd10fedbdc04f2d9
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086155958
78 https://doi.org/10.1007/bf02840338
79 schema:sdDatePublished 2022-01-01T18:02
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nc2e39e34d6e948beb4a69a745f446066
82 schema:url https://doi.org/10.1007/bf02840338
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0dc3164702964f1082bfab5e9b397713 schema:name dimensions_id
87 schema:value pub.1086155958
88 rdf:type schema:PropertyValue
89 N148cf0687454412d8ecf32d1864b3ecb rdf:first sg:person.0711055211.17
90 rdf:rest N33cb7fd37f824371a93757ae8bf9101e
91 N33cb7fd37f824371a93757ae8bf9101e rdf:first sg:person.014505130213.51
92 rdf:rest N5fc43ef4f3e24ca78db1085bdee1bb30
93 N5fc43ef4f3e24ca78db1085bdee1bb30 rdf:first sg:person.0702304172.70
94 rdf:rest rdf:nil
95 N71f90d81fca34ebf933d88a829f5e58a schema:volumeNumber 93
96 rdf:type schema:PublicationVolume
97 Nb3df741bc21c473aa94af7b0952d88a8 schema:issueNumber 6
98 rdf:type schema:PublicationIssue
99 Nc2e39e34d6e948beb4a69a745f446066 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nf76dfe7de1a24496bd10fedbdc04f2d9 schema:name doi
102 schema:value 10.1007/bf02840338
103 rdf:type schema:PropertyValue
104 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
105 schema:name Chemical Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1048512 schema:issn 0253-4134
108 0973-7103
109 schema:name Journal of Chemical Sciences
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.014505130213.51 schema:affiliation grid-institutes:grid.261674.0
113 schema:familyName Singh
114 schema:givenName Sukhbir
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505130213.51
116 rdf:type schema:Person
117 sg:person.0702304172.70 schema:affiliation grid-institutes:grid.261674.0
118 schema:familyName Gombar
119 schema:givenName Vijay
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702304172.70
121 rdf:type schema:Person
122 sg:person.0711055211.17 schema:affiliation grid-institutes:grid.261674.0
123 schema:familyName Jain
124 schema:givenName D. V. S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711055211.17
126 rdf:type schema:Person
127 sg:pub.10.1007/bf00466597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009553865
128 https://doi.org/10.1007/bf00466597
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.261674.0 schema:alternateName Department of Chemistry, Panjab University, 160 014, Chandigarh, India
131 Department of Pharmaceutical Sciences, Panjab University, 160 014, Chandigarh, India
132 schema:name Department of Chemistry, Panjab University, 160 014, Chandigarh, India
133 Department of Pharmaceutical Sciences, Panjab University, 160 014, Chandigarh, India
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...