On the dependent structure between rainfall intensity and duration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

Sangdan Kim

ABSTRACT

In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbel’s type-II bivaria te distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent models. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events. More... »

PAGES

351-351

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02836016

DOI

http://dx.doi.org/10.1007/bf02836016

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014159875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gyeonggi Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.496114.f", 
          "name": [
            "Department of Environmental Policy, Kyonggi Research Institute, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sangdan", 
        "id": "sg:person.016643340625.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643340625.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-05", 
    "datePublishedReg": "2004-05-01", 
    "description": "In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbel\u2019s type-II bivaria te distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent models. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/bf02836016", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "On the dependent structure between rainfall intensity and duration", 
    "pagination": "351-351", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43752f0875ed27309efd5538bd1a8e50c5159b0ff2393085c95377153f22c7d2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02836016"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014159875"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02836016", 
      "https://app.dimensions.ai/details/publication/pub.1014159875"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02836016"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02836016'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02836016'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02836016'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02836016'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02836016 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0c31424e234b4893a0fb2c300794dd50
4 schema:datePublished 2004-05
5 schema:datePublishedReg 2004-05-01
6 schema:description In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbel’s type-II bivaria te distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent models. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nacdd6513e0184a2f90079edaaad2bb8f
11 Nd2e93dfc47c2465eaa2e45fb26803c1e
12 sg:journal.1136365
13 schema:name On the dependent structure between rainfall intensity and duration
14 schema:pagination 351-351
15 schema:productId N9ad6e37f8ae749b4a9602d74bdd5974c
16 Nad7bd05ab0fc461891e26cc74d4c0bd5
17 Nc38a2d3d4bda4f01817b9b7af1eef7f0
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014159875
19 https://doi.org/10.1007/bf02836016
20 schema:sdDatePublished 2019-04-10T15:43
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N9a3fdc6db27b4e9a82618ac1faa11e9a
23 schema:url http://link.springer.com/10.1007/BF02836016
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0c31424e234b4893a0fb2c300794dd50 rdf:first sg:person.016643340625.55
28 rdf:rest rdf:nil
29 N9a3fdc6db27b4e9a82618ac1faa11e9a schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N9ad6e37f8ae749b4a9602d74bdd5974c schema:name doi
32 schema:value 10.1007/bf02836016
33 rdf:type schema:PropertyValue
34 Nacdd6513e0184a2f90079edaaad2bb8f schema:volumeNumber 8
35 rdf:type schema:PublicationVolume
36 Nad7bd05ab0fc461891e26cc74d4c0bd5 schema:name dimensions_id
37 schema:value pub.1014159875
38 rdf:type schema:PropertyValue
39 Nc38a2d3d4bda4f01817b9b7af1eef7f0 schema:name readcube_id
40 schema:value 43752f0875ed27309efd5538bd1a8e50c5159b0ff2393085c95377153f22c7d2
41 rdf:type schema:PropertyValue
42 Nd2e93dfc47c2465eaa2e45fb26803c1e schema:issueNumber 3
43 rdf:type schema:PublicationIssue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
48 schema:name Statistics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136365 schema:issn 1226-7988
51 1976-3808
52 schema:name KSCE Journal of Civil Engineering
53 rdf:type schema:Periodical
54 sg:person.016643340625.55 schema:affiliation https://www.grid.ac/institutes/grid.496114.f
55 schema:familyName Kim
56 schema:givenName Sangdan
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643340625.55
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.496114.f schema:alternateName Gyeonggi Research Institute
60 schema:name Department of Environmental Policy, Kyonggi Research Institute, Korea
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...